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Quadratic Interpolation for Image Resampling
Neil A. Dodgson

Abstract—Nearest-neighbour, linear, and various cubic in-

terpolation functions are frequently used in image resam-

pling. Quadratic functions have been disregarded, largely

because they have been thought to introduce phase distor-

tions. This is shown not to be the case, and a family of

quadratic functions is derived. The interpolating member

of this family has visual quality close to that of the Catmull-

Rom cubic, yet requires only sixty percent of the computa-

tion time.

Keywords—Image resampling, quadratic interpolation, cu-

bic interpolation

I. Introduction

IMAGE resampling is used in a wide variety of imagemanipulation tasks including image scaling, image regis-
tration, image warping, and photo-mosaicing. Resampling
is often divided into two sub-processes: reconstruction and
sampling. The former creates a continuous function from
the discrete image data, and the latter samples this to cre-
ate a new, resampled, image. Reconstruction of a piecewise
continuous function from discrete data is most often taken
to be a linear combination of the input data and a recon-
struction kernel. For unit-spaced samples this is:

f(x) =

+∞
∑

i=−∞

fi h(x− i)

where the fi are the sample values and h(s) is the recon-
struction kernel.
Many different reconstruction kernels have been pro-

posed and analysed [1]–[9]. In most cases the reconstruc-
tion kernel is a major factor in the quality of the final im-
age. Speed of processing is frequently also an issue, and so
a trade-off between time and quality may have to be made.
Piecewise local polynomials are used extensively for re-

construction in image resampling applications because they
are simple, quick to evaluate, and easy to implement. Ex-
amples are nearest-neighbour, linear, and Catmull-Rom cu-
bic interpolation. The first two are extremely simple to
evaluate, but give poor quality visual results. The latter
takes longer to evaluate but generally results in a good
image.
Detailed investigation of degree 0, 1, and 3 piecewise lo-

cal polynomials has been carried out [1], [3]–[6], [9]–[11].
However, the degree 2 (quadratic) polynomials have been
largely disregarded. This correspondence discusses why
they have been ignored, derives a set of potentially use-
ful quadratics, and analyses these by comparison to well-
known degree 0, 1, and 3 polynomials.
Note that these functions do not necessarily pass through

the input data points. We use the convention that a func-
tion that passes through all the input data points is an
interpolant, while one that does not is an approximant [9].
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II. Piecewise Local Polynomials

The piecewise local polynomials have been used exten-
sively in image resampling applications. They are simple,
easily evaluated functions. In one dimension they have ker-
nels of the general form:
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(1)

When convolved with the data points this produces a piece-
wise equation of degree n− 1 where each polynomial piece
depends on the nearest m data points. The ki,j are the
m × n co-efficients of the equation. They are usually de-
termined by applying constraints to the form of the recon-
structed function. Normally m = n, although there are a
few exceptions to this rule (as in Maeland’s two point cubic
interpolant, for which m = 2 and n = 4 [6]).
This equation can be trivially extended to two dimen-

sions by using the same one dimensional kernel along each
axis of the co-ordinate system [1]. In this correspondence
we will present one-dimensional versions for clarity. Ref-
erences to visual quality will, of course, be to the two-
dimensional versions.

III. Zero, First, and Third-Degree Polynomials

The simplest, non-trivial, example of a piecewise, local
polynomial is the zero-degree member of the family (m =
n = 1), nearest-neighbour interpolation:

h(s) =

{

1, |s| ≤ 1
2

0, otherwise

In image resampling this is a very fast operation, but it
produces an image with blocky artifacts. An example of
a function reconstructed by this method can be seen in
Figure 1(a), while its kernel is shown in Figure 2(a).
The only useful first-degree member of the family (m =

n = 2) is the familiar linear interpolation:

h(s) =

{

1− |s|, |s| ≤ 1
0, otherwise

In resampling work this usually gives a better result than
nearest-neighbour, for an extra computational cost. Unfor-
tunately it also tends to blur the final image. Figure 1(b)
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shows a set of points reconstructed by linear interpolation,
and Figure 2(b) shows the kernel.
Temporarily skipping over the quadratics (second de-

gree) we come to the cubic members of the family (m = n =
4). These have been widely studied [1], [3]–[6], [8], [9]. Of
particular note here is Mitchell and Netravali’s analysis of a
two-parameter family of these cubics [1], against which we
will be making some comparisons with the quadratic fam-
ily of reconstructors. The two-parameter family of cubics
have kernels of the form:
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where B and C are the two parameters.
Particular members of this family are of special note:

the cubic B = 1, C = 0 is the approximating cubic B-
spline (Figures 1(f) and 2(f)) which produces quite a blurry
image, while B = 0, C = 1

2
(Figures 1(e) and 2(e)) is the

Catmull-Rom cubic which produces a good image.

IV. Quadratic Reconstructors

Quadratics have been largely disregarded in image re-
sampling. Two distinct reasons for this are given in the
literature. The first, and more serious, objection to us-
ing quadratics is that their filters “are space-variant with
phase distortion” [8]. Were this true, they would indeed be
unsuitable for image resampling, as they would introduce
distortions into the resampled image. Schafer and Rabiner
[12] show that any quadratic will produce phase distortions
if each quadratic piece starts and ends at the sample points.
Making an alternative assumption, implicit in Equation 1,
that each quadratic piece starts and ends halfway between
sample points (i.e. each piece is based on the three nearest

points) then, as will be seen, quadratics with linear phase
can be derived that are suitable for image resampling. All
reconstructors considered in this correspondence are space-
invariant.
The second, more subjective, objection to using quadrat-

ics is that using three points for interpolation would result
in two points on one side of the interpolated point and only
one point on the other side [5]. Compare this with linear
reconstruction, where there is one point either side, and cu-
bic reconstruction, where there are two. The case for the
quadratic can be restated by saying, as we did above, that
the reconstructed point is calculated from the three nearest

sample points, in the same way that linear interpolation is
calculated from the two nearest, and cubic from the four
nearest. The former statement produces a perceived pref-
erence for linear and cubic over quadratic, while the latter
makes no distinction.

In our derivation of the quadratic we start with the gen-
eral form (Equation 1 with m = n = 3):

h(s) =
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(2)

To produce a useful reconstructor from this general form
we need to apply restrictions to the equation. Following
[1] and [9], we want the reconstructor to have linear phase
(otherwise it will introduce phase distortions, which, as dis-
cussed above, are undesirable), C0-continuous (the eye be-
ing extremely sensitive to discontinuities in intensity [13]),
and exhibit the property of ‘straightness’. This latter prop-
erty is that, if the three control points for a given segment
have the same value then the reconstructed segment should
have that value for its entire length [9]. Mitchell and Ne-
travali [1] describe this latter condition as “designing the
problem of sample-frequency ripple out of the reconstruc-
tor”, while Parker et al [5] describe it as “ensuring that the
DC amplification is unity”.
Enforcing these three eminently sensible criteria reduces

Equation 2 to one degree of freedom:

h(s) =


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2
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2
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2
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2
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2
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(3)

All members of this one parameter family of quadratics
have linear phase by virtue of the criteria applied in their
derivation, proving the existence of piecewise quadratics
which do not introduce phase distortions.
To remove the final degree of freedom, we can enforce

either of two conditions, producing two specific reconstruc-
tors. The first condition is that the quadratic must interpo-
late the data points. This sets r = 1, reducing Equation 3
to:

h(s) =






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2

|s|2 − 5
2
|s|+ 3

2
, 1

2
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2

0, otherwise
(4)

This quadratic’s kernel can be found in Figure 2(c), and
an example reconstruction in Figure 1(c).
The second condition, which cannot be enforced at the

same time as the first, because of the limited number of
degrees of freedom available in Equation 3, is that the
quadratic must be C1-continuous. This forces r = 1

2
, re-

ducing Equation 3 to:

h(s) =
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2

0, otherwise
(5)

Figure 2(d) shows this quadratic’s kernel, and Figure 1(d)
an example reconstruction.
We call these two functions the interpolating quadratic,

and the approximating quadratic B-spline, respectively.
Other values of r produce a blend of these two specific
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quadratics, in a similar fashion to the way in which cu-
bics falling along the line 2C + B = 1 in Mitchell and
Netravali’s two-parameter family of cubics [1] are a blend
of the Catmull-Rom interpolating cubic and the approxi-
mating cubic B-spline.

V. Evaluation

A. Functional Evaluation

Most of the functional features of the family are criteria
applied in their derivation. After these, perhaps the most
important thing to note about the functional structure of
the one parameter family is that they are constrained to
pass through the midpoints of the segments joining each
pair of adjacent data points. This constraint is a direct re-
sult of imposing the C0-continuity and straightness criteria
on the form of the kernel.

The interpolating quadratic (Equation 4) produces a
piecewise reconstruction where each parabolic piece is con-
strained to pass through a data point and the two adjacent
midpoints. The piecewise curve is thus exactly defined by
the only possible pieces that can pass through the con-
trolling points. These pieces can be shown to be linear
blends of two linear functions, as illustrated in Figure 3.
This is analagous to Brewer and Anderson’s derivation of
the Catmull-Rom (Overhauser) cubic function as a linear
blend of two interpolating parabolas [14]. The interpolat-
ing quadratic function is one of the general set of Catmull-
Rom curves [15].

The approximating quadratic (Equation 5) is also con-
strained to pass through the midpoints but not through
the sample points. It seems counter-intuitive to have a
function which is constrained to pass through non-sample
points and yet does not, in general, pass through the sam-
ple points themselves. However, this function is of good
lineage, being the second degree B-spline.

B. Visual Evaluation

An important test of the visual quality of any recon-
structor is visual inspection of the intensity surfaces that
it produces. While a formal measure of quality is highly
desirable, finding such a measure which is closely related
to subjective quality has proved difficult [9], [13], [16].

Visually comparing the two quadratic reconstructors
with linear interpolation, we find that the approximating
quadratic B-spline produces a more blurry intensity surface
than linear interpolation while the interpolating quadratic
produces a less blurry result than the linear. Figure 4 shows
an example image resampled (scaled by a factor of four) us-
ing each of the reconstructors.

If we compare these quadratics to similar cubic re-
constructors we find the blurriness of the approximating
quadratic lies between that of linear interpolation, and that
of the excessively blurry approximating cubic B-spine (the
approximating cubic B-spline should not be confused with
the generally good results of the non-local interpolating
cubic B-spline [6], [9], [17]). The surprising result is that
the intensity surface produced by the quadratic interpolant

approaches the quality of that generated by the Catmull-
Rom cubic, which is generally accepted as the best cubic
interpolant [9]. The quadratic does exhibit a little more
anisotropy than the Catmull-Rom but, apart from this,
they are practically identical. A visual evaluation of the
range of reconstructors provided by Equation 3 shows that
a value around r = 0.80 provides the best trade off between
the slight anisotropy of the interpolant and the blurriness
of the approximant. This is similar to Mitchell and Ne-
travali’s subjectively best cubic [1] which is a sum of two-
thirds Catmull-Rom and one-third approximating cubic B-
spline, thus providing a trade off between the sometimes
excessive sharpness of the Catmull-Rom and the blurriness
of the B-spline.

C. Frequency Domain Analysis

A frequency domain analysis compares the reconstruc-
tors against the sinc function, the perfect reconstructor for
band-limited signals [18], [19]. While this is accepted prac-
tice, it has been noted that it does not correlate well with
subjective visual analysis [8], [9], [11]. Figures 5 and 6 show
the frequency responses of various reconstructors. Only the
positive frequency axis is shown as all of the functions are
even.
Two things are of interest in the pass band: how soon the

function starts to fall away, and how steeply it falls away.
The closer to ν = 0.5 and the steeper the fall off, the better
[5]. Nearest-neighbour interpolation performs fairly well in
the pass band but falls off very slowly. Linear interpolation
has poor pass band performance with the quadratic and
cubic approximating B-splines getting progressively worse,
as could be expected from their progressively greater blur-
ring effects. The Catmull-Rom cubic performs well, with
the best pass band response and the fastest fall off. The
interpolating quadratic’s pass band response falls roughly
halfway between the poor linear and the good Catmull-
Rom.
In the stop band a better performance is indicated by

a function which stays closest to zero. Nearest-neighbour
thus has appalling performance, with the other B-splines
(linear, quadratic, and cubic) getting progressively better.
The approximating cubic B-spline has the best stop band
performance of any function considered. The interpolating
quadratic and Catmull-Rom cubic have similar stop band
responses, the Catmull-Rom’s being slightly better.

D. Summary of Evaluation

The best pass band performance of the six functions is
shown by the Catmull-Rom cubic, followed by the inter-
polating quadratic. The best stop band performance is
shown by the approximating cubic B-spline, followed by
the Catmull-Rom. The approximating cubic B-spline has,
however, appalling pass band performance. The interpo-
lating quadratic has average stop band performance. The
interpolating quadratic thus has a frequency response bet-
ter than the linear but not as good as the Catmull-Rom
cubic.
The surprising result of the visual analysis is that the
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interpolating quadratic produces a visual result that is very
nearly as good as the Catmull-Rom cubic’s. The Catmull-
Rom cubic or Mitchell and Netravali’s subjectively best
cubic [1] both produce slightly better visual results than
this quadratic, and so would probably be used in preference
in an application where quality is the overriding issue. In
time-critical applications, however, the faster computation
time of the quadratic over the cubic could offset the slight
loss in quality that may result. Linear interpolation, while
even faster, would represent a much greater loss of quality.
A trial across nine two-dimensional resampling operations
showed that a quadratic took 55–63% of the time of a cubic
for similar visual quality, while a linear interpolation took
25–36% of the time of a cubic for significantly degraded
visual quality.

VI. Summary

We have shown that linear-phase, piecewise quadratics
do exist and can be used for image resampling. We have
derived two potentially useful quadratic functions. One
of these (the interpolating quadratic) has visual quality
approaching that of the Catmull-Rom cubic, but it requires
only 60% of the computation time of the cubic. This could
make it useful in applications where speed and quality must
be traded off against one another.
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Figure 1: Example reconstructed functions. The input data points are represented by crosses.
(a) nearest-neighbour, (b) linear, (c) interpolating quadratic, (d) approximating quadratic B-
spline, (e) Catmull-Rom cubic, (f) approximating cubic B-spline.
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Figure 2: Kernels (also known as impulse responses): (a) nearest-neighbour, (b) linear, (c) interpo-
lating quadratic, (d) approximating quadratic B-spline, (e) Catmull-Rom cubic, (f) approximating
cubic B-spline.
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Figure 3: The quadratic pieces reconstructed by the interpolating quadratic kernel can be con-
structed as a linear blend of two linear functions. p1,2(t) and p2,3(t) are straight lines passing
through the data points as shown. q1,2,3(t) is a linear blend of these, producing a quadratic
piece which passes through the central data point, and the midpoints of the two lines. q1,2,3(t) is
calculated from p1,2(t) and p2,3(t) as: q1,2,3(t) = (1− t)p1,2(t) + (t)p2,3(t).

This figure is

UNAVAILABLE
See printed paper for details.

Figure 4: An image of Leominster Town Hall, enlarged by a factor of four using six different
reconstructors: (a) nearest-neighbour, (b) linear, (c) interpolating quadratic, (d) approximating
quadratic B-spline, (e) Catmull-Rom cubic, (f) approximating cubic B-spline.
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Figure 5: Frequency responses on a linear scale for evaluation of pass band performance.
(a) nearest-neighbour, (b) linear, (c) interpolating quadratic, (d) Catmull-Rom cubic, (e) ideal
(sinc) frequency response, (f) approximating quadratic B-spline, (g) approximating cubic B-spline.
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Figure 6: Frequency responses on a logarithmic (decibel) scale for evaluation of stop band per-
formance. (a) nearest-neighbour, (b) linear, (c) interpolating quadratic, (d) Catmull-Rom cubic,
(e) ideal (sinc) frequency response, (f) approximating quadratic B-spline, (g) approximating cubic
B-spline.
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The logarithmic scale graphs in Figure 6 are presented as printed in IEEE Transactions on Image Processing. The vertical scale is in decibels. The scale is incorrect in that it is scaled by a factor of ln(10): the values on the vertical axis therefore need to be divided by a factor of 2.3 to be correct.




