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Abstract

We describe a method for efficient calculation of coefficients for sub-
division schemes. We work on the unit sphere and we express the z-
coordinate of all the existing points as power series in the variable cos 6.
Any linear combination of them is also a power series in cos and, by
solving a linear system, we determine the linear combination that will
give the smoothest interpolation of the sphere at a particular point. This
way we are able to find constructively some optimal coefficients for the
subdivision scheme.

Keywords: subdivision; Chebyshev polynomials; hypergeometric func-
tions.

1 Introduction

In [3] a constructive method was proposed for the calculation of the coefficients
of a subdivision scheme, based on geometric considerations rather than on solv-
ing an optimisation problem. We worked on the sphere S with centre the origin
O and radius 1. We identified the parameter space with the plane z = 0,
allowing us to describe the exact position of the points with a function

f-: R? >R (1)
giving their z coordinates.

On the sphere S, except of the Euclidean metric inherited by its embedding
in R®, we can define the spherical metric, where the distance between two
points is equal to the Euclidean angle 8 between the vectors from the centre
of the sphere to these two points. In this paper we will always assume S to
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be equipped with this spherical metric. The z-coordinate of any point P of S
is given by cos @ where 6 is the distance between P and the top of the sphere
(0,0,1).

In [3] we studied subdivision supposing that the existing points lie on S and
are locally symetrically arranged around (0,0, 1). Exploiting the symmetry, we
grouped them in subsets, so that for every such set of points the sum of their
inverses images in the parameter space gives the origin 0. That allowed us
to deal separately with the z-coordinate. We searched for linear combinations
of these set of points, with sum of weights 1, lying on S. Then we used the
coeflicients of these linear combinations to describe subdivision schemes that
were optimal from the point of view of the spherical geometry we employed.

In one of the examples we studied in [3] we showed that we can use the
Chebyshev polynomials of the first kind and their first derivatives to implement
efficiently these methods to the study of the 4-point schemes (b,2) introduced
in [2]. Here we will generalise these ideas using higher order derivatives of the
Chebyshev polynomials and their generalisation the hypergeometric functions.

We will again group the points in subsets so that the sum of the inverse
images in the parameter space is the origin. In the simplest case we suppose
that all the points in a subset have the same distance from (0,0,1). We write
all the distances as multiples of a basic distance 6, that is

c10,c90,...c,0 (2)

All the z-coordinates are given by

cosc18, coscab, . .. coscyb (3)

and we will write all the above functions as power series in cos#.

We suppose that the newly inserted point of the subdivision scheme is the
image of the point (0,0) of the parameter space. We express it as a linear
combination of the existing points and by linearity its z-coordinate will have
the form of a linear combination

ay cosc1l + as coscaf + - - - + ay, cos e b (4)

which also can be written as a power series P(cosf). To find coeflicients for a
stationary scheme we will study the limit case 8 — 0, that is, cos§ — 1. So, we
will study the power series P at 1. We will require P(1) = 1, which means that
the z-coordinate of the newly inserted point is 1 and so it lies on S, actually it is
the point (0,0,1), that is, the top of S. Considering P as a local approximation
of S at (0,0,1), we will require that its first k& derivatives are equal to 0 at P(1),
where k is a large as possible. That is, the approximation will be the smoothest
possible.

In the next sections we will see how we can calculate the coefficients a; so

that these requirements are met. We will also see a modification of this method
with grouping of points with different distances from (0,0,1).



2 The univariate case. Chebyshev polynomials

The univariate case is special in the sense that usually, that is in all the known
uniform schemes, all the distances c¢16,c20,...,c,0 can be expressed as integer
multiples of a basic distance §. In particular, in the binary (2, N) schemes which
were introduced in [2], if we suppose that the existing points are equally spaced
on the unit circle with centre (0,0), their distances from the new inserted point
are

9, 30, 50, ..., (2n—1)8 (5)

Working as in the bivariate case, we identify the parameter space R with
the line y = 0, that is the z-axis, suppose that the new point is the image of the
point 0 of the parameter space and that the existing points are symmetrically
arranged around it. Then the linear combination (4), giving the y-coordinate
of the new point, becomes

a1 cosf + axcos3f + aszcosbf + --- + a,cos(2n —1)0 (6)

The function cosnf can be expressed as a polynomial of variable cos 6 with
the use of the Chebyshev polynomial of the first kind

cosnf = T, (cos9) )

Writing cosf = z we get the linear combination of Chebyshev polynomials

Pz) = a1Ti(z) + axTs5(z) + asTs(x) + - - - + apTon—1(x) (8)

As in the bivariate case we require P(1) = 1, so that the new point also lies on
the unit circle, and we use the rest n — 1 degrees of freedom to force the first
n — 1 derivatives of P to be 0 at 1.

So, the system of equations that will give the smoothest possible approxi-
mation of the unit circle at the point (0,1) is

alTl(l) +C¥2T3(1) + .- +anT2n_1(1) =1

a1 T (1) +asT4(1) + - 4a,Ty, (1) =0
(n—1) (n—1) (n—1) -

a Ty (1) +aoT; 1+ HanTy, (1) =0

To calculate the values of the Chebyshev polynomials and their derivatives
at 1, we will consider a generalisation of them, that is, the Gegenbauer or ultra-
spherical polynomials. For a real number a > —% the Gegenbauer polynomials



C2 n=0,1,2,... are the family of orthogonal polynomials corresponding to
the weight function

w(z) = (1—2%)"73 9)
see [1]. We have
o
T(z) = 2C(a) (10)
For the first derivative we have the formula
T, (z) = nCy_4 (z) (11)
while for higher derivatives we can use the formula
iCa(ac) = 2aC% 1 (x) (12)
dx n n—1
Combining equations (11) and (12) we get
T8 (z) = n2kF~Y(k — 1)IC* ,(z), k=1,2,...n (13)

Also, see [1], we have

caw= (""" ar0 =2 az0 gw=-1
and so,
T,(1) =1, T® 1) =n2"1(k-1)! (” :f; 1) (15)

We notice that any equation of the system, except the first, can be simplified
by extracting a common factor 2¥~!(k — 1)!, and the system becomes

aq +ao + 0 Fap—a +an, =1
ar(p) +3() + - Fena@n=3)(5570) Hen(2n-1)(57,) =0
0 +a23(}) 4+ 0 Aam1@n—2)(372) 4an(2n-1)(,2",) =0
0 +a23(3) + - Aan1n-1)("7Y) +an(2n-1)(T) =0
0 +0 + o 4o 120 =3)(0)) +aa(n -1 =0



The treatment of the more general 2N-point k-ary subdivision, where k — 1
new points are inserted between any two consecutive existing points, is a little
more complicated. To calculate the coefficients for the rth new point we notice
that the distances from the existing points are

m160,m20,. .., man0 (16)
with
my=(N—1Dk+r, my=(N-2)k+r, ... ,mp=r an
mn+1=k—1", 7m2n—1=(N—1)k—7‘, Man = Nk —r

Here we cannot consider a linear combination of the above points and work as
in the binary case, because nothing guarantees that the x coordinate of that
linear combination will be 0. Instead, we will pair the points P; and Ps,_j4+1
with distances m; and ma,_j41 corresponding, for j = 1,...,n, and we will
work with their linear combination

Man—j+1 m;
P; Pon_jt1 (18)
m; + Man—jt1 m; + Map—jt1
which is a point with  coordinate equal to
Man—j+1 . m; .
il gin mj + ———L——sinma,_ ;10 (19)
mj + Man—j+1 mj + Man—j+1

which has a limit equal to 0 for § — 0, as well as its first two derivatives.
The functions giving the y-coordinate are

mon—it+1 m;
nZIYL cosm;f + .

—— ———  cosman_j10 j=1,...,n (20)
mj + Man—j+1 mj + Man—j+1

Finally, working similarly to the binary case and using equation (15), we get
the linear system

Qi +ag + 0 Fa, =1
a10a21 +aga22 + --- +0na2, = 1
Q1ap1  +02an2 + -0 FQplpy =1

with



o Mon—j+1 m'(mj+i—2>
b m; + Man—jt1 m; — 1+ 1
m; Manyj-1+i—2 (21)
——————Man_jp1 . .
m] + m2n—]+1 m2n+]—1 —1+ 1

1=2,....,n j=1,...,n

under the convention that if the binomial symbol is not well defined we consider
it 0. This case arises when the order of the derivative is higher than the degree
of the polynomial.

In the next section we will see that in the bivariate case, a more general
approach will lead to an even simpler system equivalent to the above.

3 The bivariate case. Hypergeometric functions

In the bivariate case all the distances are again expressed in terms of multiples,
but not necessarily integer, of a basic distance #. That is, we have to deal
with functions of the form coscf where c¢ is a real number. In that case the
expansion of these functions as power series of variable cos# is given with the
use of hypergeometric functions.

We have, see [1]

cos2af = F(—a,a; %; sin? §) (22)
which is a power series of variable sin? 6, see equation (25) below. For the sake
of completeness of exposition, in the appendix at the end of the paper, we will
carry over the calculations transforming (22) into an expression of cosaf as a
power series of variable cosf. But here we will write cosaf as a power series
of variable (1 — cos#). The main benefit is that we will have to evaluate that
power series and its derivatives at 0 rather than at 1, and so will work with
finitely many terms of it rather than infinite many.

Writing equation (22) with £ instead of 6, gives

1
cosa = F(—a,a; =;sin’ Q) (23)
2 2
giving,
11
cosaf = F(—a,a; X 5(1 —cos b)) (24)
We also have,
- (a)n(b)n 2"
Flabicz) O)n 2 2
(a,b;¢;2) T;O ©n  nl (25)

where (a)j is the Pochhammer symbol defined by

(a)o=1, (a)y=ala+1)(a+2)---(a+k—-1), k=1,2,... (26)



see [4]. That gives,

o0

(1 —cos )™
cosafl = P,(1 — cos®) Z S (27)
Now, writing £ = cosf the linear combination ( ) becomes
aP,(1—2z)+aP,(1—xz)+ - +a,P., (1—2x) (28)

and with the same geometric and analytic reasoning as in the case of Chebychev
polynomials we will calculate «;’s such that the above linear combination has
value 1 at 1, while its first n — 1 derivatives have value 0 at that point. That is,
we have to solve the system

OqPCl (0) +CM2PC2 (0) + - +anPcn (0) =1

a1 P, (0) +as P, (0) + -0 Fan P (0) =0
(n—1) (n—1) (n—1) _

o P (0) 4aoPe,”(0) + oo HanPe,7(0) =0

The above system is satisfied if and only if the constant coefficient of the
polynomial
a1 P () + agPoy (2) + -+ - + an Pe, (2) (29)

is equal to 1 and the coefficients of , ..., 2" ! are equal to 0.

So, using (26) the system becomes

a ( (61))02(06(;')0 oy ( (cz))oQ(ch')o + e tap (_(C%H)?JOQ(OCS!)O -1

™ : (Cl)) 2(1611')1 T : (CZ)) 2(1612')1 + oo +O‘"(7((4‘;))112(1617!:)1 =0
(=c1)n—1(c1)n ( c2)n—1(c2)n (=cn)n-1(cn)n= _

Oél( )nl 127!.1 1271 11)' +a2( 3. 2 12n1 1?n 11)' 4+ .. +an(%)n_12n—w =0



Figure 1: Six equally distanced points symmetrically arranged around O’ the
top of the unit circle.

giving,

a1 +as + - +ap =1
ai(—ci)i(e) +az(—c2)1(c2)1 + - Fap(—cn)i(en)t =0
a1(—ci)n—1(c1)n—1  +as(—c2)n-1(c2)n—1 + -+ Fan(—cp)n-1(cn)n-1 =0
4 Examples

We will give two univariate and one bivariate examples to illustrate the use of
the methods described above.

4.1 A 6-point scheme
Suppose that the six points

P, Ps,..., P (30)

are equally distanced and symmetrically arranged around the top O' = (0, 1) of
the unit circle. See fig.[1]
Their distances from O’ are 6, 36, 50 and by section 2 we have to solve the system

o +ao +as =1

(o751 ((1)) +0423 g) +a35(2) =0

a3(;)  +asb(;) =0



giving,

aq G2 +as =1
a; +9a2 +25a3 =0
12as  +100as =0
which has the solution,

T, =% 3
64 0 128 0 128
Dividing each coefficient by 2, which is the number of points corresponding to

it, we find the coefficients 1, 522, ;3= of the subdivision scheme. That is, we
found the (2, 3) scheme described in [2].

(631 (31)

4.2 A 4-point ternary scheme

In section 2 we saw that sometimes because of a certain lack of symmetry we
have to group together points with different y coordinate. To illustrate that we
will calculate the coefficients for a uniform 4-point ternary univariate scheme
with the method of section 2.

Using the terminology of section 2, for r = 1 we have

mi=4 mo=1 m3=2 myu=5 (32)

The system of section 2 becomes

a1 (54(3) +55(3)) +aa(31(5) +32() =0
giving,
o +a, =1
20(11 +2062 =1
which has the solution

1 10
o = —§ Qg = 3 (33)

and the coefficients of the scheme can be found using (18). We have

14 5 10,2 1
—Cp+2p), (P +-:P 4
9(91+94), 9(3 2+33) (34)
that is,
4 20 10 4
_ﬁPl, o7 1 2—71)37 —ﬁﬂ (35)

Because of a particular symmetry of uniform ternary schemes, for r = 2 we
just get a permutation of the above ratio of distances, and we do not need to
solve a second linear system. We also notice that the scheme we found is the
(3,2) scheme described in [2].
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R Q Q R,

Figure 2: The mask of a 16-point v/2-scheme.

4.3 A V/2-scheme for regular grids

In [3] we described a subdivision scheme for regular grids belonging to the /2
family. In each step of that scheme a new point is inserted in the centre of each
face, calculated as linear combination of its nearest 16-points. See figure [2].
Then every new vertex is connected with its 4 nearest neighbours, while the
original edges are removed causing a 45 degree rotation of the grid.

The 16 points are grouped according to their distances from the new point
O as

{P17P27P37P4}7 {Ql: Q27 Q37 Q47Q57Q67Q77Q8}7 {R17R27R37R4} (36)

We take the distance between P; and O as the basic distance 6. Unlike the
univariate case it is not straightforward what the other distances should be,
because it depends on the embedding of fig.[2] on the sphere, which cannot be
as regular as its embedding in the Euclidean plane. Because we are interested in
the limit case § — 0, that is, in the embedding of fig.[2] in a small neighbourhood
around the top of the sphere, and because in that case the ratio of the distances
on the sphere tends to the ratio of the distances on the Euclidean plane, we will
suppose that

OP; =0, 0Q; = V50, OR; = 36 (37)

So, the system becomes

(031 +a +ao3 =1
(-D)1ey (—vV5)v5as (=3)3as =0
(—VB)(—V5+ DVE(V5 + oz (—3)(—2)3-4a3 =0
giving,
o “+as “+as =1
—Q] —5052 —90[3 =0

20 +T72a3 =0

which has the solution

10



45 -9 5
al:ﬁ azzﬁ Ot3:3—2 (38)
Finally, we divide each coefficient with the number of points corresponding to
it, and we find the coefficients 7, 5%, 15z for the points P;, Q;, R;, respectively.
That is, we found the same coefficients as in [3] where we worked with a different

method.

We can notice that if all the distances are rational or square roots of rationals,
as it is always the case on a regular grid, then all the coefficients of the system
are rational. Indeed, the number (c;),(—c¢;), is the product of numbers of the
form

(ci+k)(=ci+k)=—c?+k*, k=0,1,....,n—1 (39)

which is rational if ¢; is rational or the square root of a rational. In that case
the solutions of the system and thus the coefficients of the subdivision scheme
are also rational.

5 Conclusion - Further work

We developed a method to calculate efficiently coefficients for subdivision schemes,
taking into consideration geometric and analytic aspects of subdivision. We
showed that the study of subdivision can be facilitated with mathematical tools
such as the Chebyshev polynomials and the hypergeometric functions.

We conjecture that the univariate schemes generated by the method de-
scribed in section 2, are the same as the schemes (b, N) in [2]. In [3], in a
slihgtly different context, there was a proof for the case N = 2.

6 Appendix
Equation (22) with § instead of a gives

aal
27272
We use the linear transformation of the variable, see [1]

cosaf = F( ;sin? 6) (40)

T(c)T(¢c—a—1b)

F(a,b;c;2) = T(c—a)l(c—b)

F(a,b;a+b—c+1;1—2)+

(41)
—apT(@T(a+b—¢)
_ ,\c—a—b _ —be—qaq— -1 -
+(1-2) (T () Flc—a,c—bjc—a—b+1;1-2)
and (40) becomes
r2(d) aal
cosaf = L F(——=,=;=;co8?0)+
r(e)r(5e) 27272 )
r(Hr(-3) . 1+a 1-a 3
+cosf—2 2. , :=;cos? 6
F(—%)T(%) ( 2 2 72 )



Using (25) we get,

cosaf = P,(cosf) =
(43)

)F(_%) — ( 2 )n
%)F(%),;) (3

which expresses cosaf as a power series of variable cos§. The first part of the
sum gives the even powers of cosf and the second part the odd.

To simplify the formula we can use the formulae, see [5],

1 1
F(i) =+/r and F(—§) =-27 (44)
and the reflection formulae
1 1 m
I(z+2)I(5—2) = 4
(2 +2) (2 ) COSTZ (4)
giving,
1 1 l14+a._,1-a T
F2 = I'(=)I'(—=) =-2 r r = 4
(=7 . T(ZI(3) TN =
and
a._..a I'(-%2+1)_ a 2 ™ 2 ™
I(—=)(2) = 2 I'(z)=- = 4
( 2) (2) -5 (2 acos(a_gl)7r a cos 1227 47)
So, equation (43) becomes
wa (—2)n(%)n cos®™ 6
=P, — o TG 2/n\3
cos af (cos @) = cos 5 Z_;) @, p
o (48)
(1—a)r (142),(152), cos®n 1 6
+a cos 2 7;) (%)n o
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