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Abstract

In this paper we investigate the properties of recursive subdivision from
a geometric point of view. We explore the connections between subdivi-
sion and such areas of mathematics as spherical trigonometry, inversive
geometry, and orthogonal polynomials. The methods we develop give new
insights to well-known subdivision schemes and they can also be used in
the argued construction of new schemes with prescribed properties.

1 Introduction

In recursive subdivision, we start with an initial mesh of vertices and edges, and
in each step, we insert new vertices, calculated as linear combinations of the
existing ones, and we connect them with edges, producing a refined mesh. In
approximating schemes, in each step, we also adjust the old vertices, again as
a linear combination of the existing ones. A subdivision scheme is called sta-
tionary if the weights of the linear combinations are the same in each step. The
information about these linear combinations is usually coded in masks, that is
planar configurations of vertices and edges, with the weights of the linear com-
binations adjusted on the vertices. Usually, these masks are highly symmetric,
because the linearity of the subdivision process means that the surface is invari-
ant under an affine transformation of the set of initial points, and in particular
under reflections and rotations of that set.

Two basic questions naturally arising in the study of subdivision schemes
are: what weights should we choose for the linear combinations to optimise in
some way the properties of the scheme, and what are the properties of a scheme
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given a choice of weights. The main analytic tools to tackle these questions
are the eigenanalysis of the subdivision matrix, see [3], the generating function
formalism, see [4], and the characteristic map, see [8].

In this paper we will take a more geometric approach. Instead of working
on a planar mask, which can be also seen as the parametric space, we work
with symmetric configurations of points lying on other than the plane surfaces.
By taking linear combinations of these points we try to determine new points
satisfying some particular geometric considerations. For interpolating schemes
the standard requirement for the new points is to lie on the same surface as the
initial configuration. In a variation of this approach we can start with an initial
symmetric planar configuration, apply a transformation that sends the plane on
a surface of our choice, and then work with this new configuration.

Here, most of the time, that underlying surface will be the sphere. One
reason for that choice is the simplicity of the sphere that makes the calculations
easier. Another is that locally all the points of a sphere look alike, and the
only other surfaces with that property are the plane and the cylinder. A third
reason is that the inverse of the square of the radius of the sphere can be seen
as a local estimator of the Gaussian curvature. Nevertheless, sometimes we will
work on the hyperboloid and we will see that most of the results are identical.
As the only other simply connected surface with constant curvature, that is the
Euclidean plane, gives trivial schemes, our treatment, in a sense, is complete.

In the univariate case the equivalent of working on a sphere is working on a
circle. Sometimes we will use the word sphere irrespective of the dimension to
make the text lighter.

2 The geometry of recursive subdivision

Working on a sphere, a first approach to the construction of a subdivision scheme
is to start with a symmetric configuration of points on that sphere, and then
calculate explicitly the new point as a linear combination of that symmetric
configuration. Such a method, as we expect, involves a lot of trigonometry and
the difficulty of the calculations increases rapidly with the complexity of the
problem, but gives exact, from our point of view, results.

A second approach is to start with a symmetric planar configuration, project
it on the sphere, and then calculate the new points as a linear combination of
the points on the projected image. This approach, as we expect, involves a lot
of inversive geometry, and is not so exact, in the sense that the transformation
we apply is not an isometry and thus the projected configuration on the sphere
is not as symmetric as we wish. Nevertheless, because the transformation is
conformal, as the subdivision step increases, we expect the two methods to give
the same result in the limit. Moreover, with the second method we have to
handle rational functions, rather than trigonometric, making the algebraic and
analytic manipulation much easier.

2.1 Spherical symmetric configuration

To calculate a point on the unit sphere as a linear combination, with sum of
weights 1, of some other points of the sphere, does not pose any theoretical



difficulties. A first observation we can make is that not all the weights can be
positive. Indeed, in that case, if O is the origin, and so the centre of the unit
sphere, the equation

alO_Pl + QQO-PQ + -+ OLnOﬁn = O_P (1)

gives . . . .
la1||[OP1| + 2| [OP:| + -+ - + [an|[OF,| > |OP| (2)

Also, |OF;| =1fori=1,2,...,n, giving

lag| + lag| + -+ |an| 21 (3)
with equality holding if and only if all the vectors are colinear. If all the a;,
i=1,2,...,n, are positive, then (3) holds as an equation. That means

0P, =0P, =-.-=0P, (4)
giving P, =P, =--- = P,.

So, if all the coeflicients are positive the new point P lie in the interior of
the sphere, and we have to find a way to use negative coefficients to increase
the distance of the new point from the origin. Indeed, suppose we found two
linear combinations Ly, Lo of the initial points, with sum of weights 1, giving the
points M, N respectively. Suppose that M, N lie on the line OP, and M # N.
The figure [1] shows a simple case for dimension 1.

P

P2 P3

We have

- —

oM = %(oh +0P,) = nOP, ON = %(OE +0P) =vOP, u#v (5)
So, the linear combination
ON + a(ON = OM) = (v + a(v — p))OP (6)

where « is a variable, gives all the points on the line O P, and has sum of weights
1 as required. We just have to calculate the value of a that will give the point
P.

In general, if Py, P»,... P} are points on a sphere, we take n linear combina-
tions

L13L23"'5Ln



each one with sum of weights 1, such that the new points
Ly(Py,...,P),Lo(P1,...,Pt),..., Lp(Pr,...,Py)

are colinear. Using n — 1 variables we form a linear combination like,

Li 4+ a1(Ly — Le) + aa(Ly — L3) + -+ - + ap—1(Lp—1 — L) (7)

or,

Li+a1(L1 — L) + aa(Ly — L3) + - - + ap—1(L1 — Ly) (8)

that by construction guarantees sum of weights 1. Then we solve for the n — 1
variables a1, s, ..., a,_1 to satisfy certain requirements.

Some remarks that will help understanding how we can use the above pro-
cedure

(i) The values of a;,az,...,a,_1 depend on the initial configuration of the
points Py, P,,... P, on the sphere. Requiring that configuration to have the
highest possible symmetry usually determines it up to similarity. In that case,
the positions of P;, Py, ..., P are functions of one variable. Usually we will use
a variable 6 corresponding to arcs on the sphere. The initial value of 6, before
the first subdivision step, is strongly connected to the curvature as it determines
the radius of the sphere the initial data lie on. We can use this variable as a
curvature controlling tension parameter.

(ii) As we perform more steps of the subdivision process the size of the mask
shrinks, and in the limit becomes 0. That is, in the limit we get a stationary
scheme.

(iii) In particular, we can resolve artifacts by using the varied coefficients in
the first few steps of the subdivision because we know that these force the new
points, in the symmetric case, to lie on the sphere.

2.2 Transformation of a planar symmetric configuration

In this second approach we start with a symmetric configuration on the plane,
and we project it on the unit sphere. That is, we project every point of the
plane z = 0 towards or away from the point Z = (0,0, 1) until it meets the unit
sphere. See figure [2].

T
|
|
|
- -

This projection is equivalent to a reflection in the sphere with centre (0,0,1) and
radius v/2, and so is a continuous conformal transformation. See for example

[7].



If A= (z,y,0) is a point on the plane z = 0 and a = /22 + y? is its distance
from the origin then the image of A is
27 2y a?-1

A =
(1—}—a2’1—+—az’1+a2

) (9)

We notice that the neighbourhood of O maps to a neighbourhood of (0,0,-1) on
the sphere, so if we prefer to work with positive numbers we can also apply a
reflection through the plane z = 0, that is, to work with the inversion

2x 2y 1—a?

A =
= o(4) (1+a2’1+a2’1+a2) (10)
Let also 5
1—a
0:(4) = 1 (1)

denote the z-coordinate of o(A).
Working as in the case of spherical symmetric configuration, we start with

a set of points Pi, P, ..., P, on the plane forming a configuration symmetric
around the origin O of the plane. We find linear combinations
L15L2)"';Ln

with sum of weights 1, satisfying
Li(Pl,...,Pk)ZO i=1,...,n (12)

To keep the formulae as simple as possible, and without much loss of generality,
the non-zero coefficients will correspond to points equidistant from O. Then we
form a linear combination of L;’s, again with sum of weights 1, like

L=L1+O£1(L1 —L2)+-'-+an_1(L1 —Ln) (13)

and we calculate the a; to optimise the resulting scheme.

As we said above this method is not as accurate as that of the previous
section, so the optimisation will be mainly relevant to the limit case. We notice
that as we proceed with the subdivision process all the points P; converge to O.
So a first necessary requirement for a continuous scheme is that

L(o.(P1),...,0:(P)) = 0.(0) =1 (14)

To continue, we express all the distances of the initial points P; from O as
multiples of a distance a. Let ¢;a be the distance from O of the points of Lj;.
Then

_1-cla®

Li(O'z(Pl);---JUZ(Pk)) - 1+62a2

i=1,...,n (15)

and (14) gives

1— cla? N (l—cfaz 1—c§a2)+ ‘o (l—cfa2 1—cfhla2) =0
1+3a2 "M+ 1+3d? My 3e? T 1+ A3 a? B
(16)
giving,
—92¢2a2 2c2 — ¢2)q2 22 — )2
1 (3 —ci)a Feday (cz—ci)a 0 (17)

1+ ga " 1+ Ga)(1 + Ga?) (1 + a?) (1 + 2a?)



After summing up the fractions we get

P(a®)
o@) =" (19)
where Q(a?) has the form
Q(a®) = (1 +cia®)(1 +c2a?) -+~ (1 + cna?) (19)

and the constant coefficient of P(a?) is 0. That means that

P(a?
lim (a”) =0 (20)
a—0 Q(a?)
and the scheme is continuous for any choice of ay,. .., 1.
So, we will determine a1, as,...,a,—1 to optimise the smoothness of the

resulting scheme. Let A be a point of distance a from O, then

1—a2 2a2
Ac;(0,A) =0.(0) —0.(A) =1~ T2 -1+ (21)

and so,
P(a?)
Q(a?)Ac,(0, A)
has a limit 0 for A — O, if and only if the term a? of P(a?) also vanishes. In
general, if the smallest non-vanishing term of P(a?) is a®*, then

(22)

lim P(a”)
a0 Q(a?)(Ac- (0, A))F1

=0 (23)

and we will calculate the ay,...a,_1 such that the first non-vanishing power
of a? is as large as possible. We have to solve a (n — 1) x (n — 1) homogeneous
system, and if it is not degenerate we will find unique @;’s such that the smallest
term of P(a?) is a®”. From an analytical point of view, that means that the
first n — 1 derivatives of P vanish at 0.

The univariate case is similar. The projection is on the unit circle rather
than the unit sphere, and the reflection through the z-axis.

Remark 1: If ¢’ is the standard projection of the initial planar mask to the
positive sheet of the hyperboloid

22— (2 +y°) =1 (24)

we have the equivalent of equation (11), see [7]

1+ a?
o.(4) = () (25)
So, in (18) instead of a polynomial
P(a®) = 210 + z2a* + - + 2,0 (26)



we have the polynomial
P(—a®) = —z1a® + z2a® + --- + (—1)"z,a®" (27)
and instead of the linear system
Ty =x2=:+=Zp_1 =0 (28)
we solve the system
—xy=ap=---=(=1)"""2,_1 =0 (29)

Clearly the two systems are equivalent and result the same subdivision coeffi-
cients.

We can also work directly on symmetric configurations on the hyperboloid
as we did in the previous section on the sphere. This will lead us to the same
equations but with hyperbolic trigonometric functions rather than trigonomet-
ric. For all our purposes the calculus of hyperbolic trigonometric functions
is identical with the calculus of trigonometric functions, and again these two
approaches will give in the limit the same result.

Remark 2: The subdivision coefficients depend on the distances c;a and the
transformation of the plane, which here is the stereographic projection on the
sphere or the hyperboloid. Clearly we can also work conversely and for a given
set of coefficients find the implied distances ¢;. That is, a metric on the plane
gives rise to a set of subdivision coefficients and vice-versa. It is conceivable
that we can express the ideas of this section just in terms of metric spaces and
their transformations.

Remark 3: In a slightly more general but less instructive approach, we can
use n variables ay, as, ..., a, to form the linear combination

L= OélLl +C¥2L2 ++OﬁnLn (30)
Then the requirement for a continuous scheme would give the relation

ar+oa+---+ap=1 (31)

3 Examples

In this section we will give several examples to illustrate the methods described
above. We give a variety of examples highlighting all the points made above.
So, we give univariate as well as bivariate examples, examples giving well known
schemes and examples giving new schemes and we use alternately trigonometry
and inversive geometry.



3.1 4-point scheme

Suppose that we have 4 points Py, P5, Ps, Py lying on a circle of centre O and
radius 1, such that

P,OP, = B,OP; = P,OP; = 26 (32)
See figure [3].

To calculate the midpoint P of the arc P>P3 as a linear combination with
sum of weights 1 of these points we start with the linear combinations

1, - = L 7 7
Ly = 5(0132 +0P;) L= §(OP1 +O0P) (33)
We want
1, = - 1 = + yi 7 7
Litai(li—Lp) = 5(0R+0Ps) +au 5 (0R +0P — 0P, —OFy) = OP (34)

and taking the norms of the colinear vectors corresponding to Ly, Ly we have

cos@ + ay(cosf —cos30) =1 (35)
giving
o — 1—cosf 1—cosf B
' cosf —cos36  cosf — (4cos?O — 3cosh)
1-— 1
cos @ (36)

- 4c0s8(1 + cosh)(1 — cosb) - 4cosf(1 + cosb)
That means,

1
1' = —
fim 1 = g @

and so, in the limit, the mask of the scheme is
1 9 9 1
16716 16" 16
that is the 4-point scheme in [5].
As we mentioned above, we can see the initial value of the angle 8 as a

variable. At the end of the paper we draw the curve interpolating the corners
of a square for several initial values of that variable 6, and halving it at each



step, showing that we can use it as a tension parameter. Then we do the same
substituting cosh § for cosf in (36). Notice that the intervals of interest are

<a; < (38)
and

0<0< oo giving
correspondingly.
3.2 4-point n-ary scheme
Suppose we have 4 points A, B, C, D equally distanced on a circle of centre O.

We want to calculate a new point P on the circle, as a linear combination of
A, B,C, D with sum of weights 1, such that

— 1

BOP =

POC =6 (40)

n—1

See figure [4]

We have,
AOP=(n+10 POC=(n—-1)0 POD=(2n—1)0 (41)

We write the linear combination

-1 1 2n —1 n+1
B+ — - A D)] (42

( - O +nOC) ( 3 OA+ an OD)] (42)

n—1 n

1
OB + EOC) +(11[(

and working as in the case of the 4-point scheme we find

i 1—1[(n—1)cosf + cos(n — 1)d]

a; = lim

o0 L{(n —1)cosf + cos(n —1)8] — 3=[(2n — 1) cos(n + 1)8 + (n + 1) cos(2n — 1)d]
which can be written

i 1—L[(n —1)Ti(cos ) + Tr—1(cosb)]
630 Ll(n = 1)T1(cos0) + T, 1(cos 0)] — 5=[(2n — 1)T;,11(cos 0) + (n + 1)Toy,—1(cos §)]




with T}, the Chebyshev polynomial of first kind. As cosO=1, the limit is equal
to

lim 1-— %[(’I’L - ].)T1 (.’L‘) + Tn_l(fb')]
a=12[(n = DT1(2) + Tn-1(2)] — 320 = DTnpa (@) + (0 + 1) Tan—1(2)]

To calculate the limit we will use the following basic facts from the theory
of Chebyshev polynomials, see for example [1].

T,(z) = nUn-1(x) (45)

where U, are the Chebyshev polynomials of the second kind.

Using (43) we see that both numerator and denominator tend to 0 as z —
1. By L’Hospital rule we can differentiate both numerator and denominator
without changing the limit. Using (45), and writing U, instead of U, (z), we
get

lim —L[(n = DU + (n — 1)Uy ]
a=1L[(n —1)Up + (n — 1)Un—2] — o=[(n + 1)(2n — 1)Uy, + (n + 1)(2n — 1)Uzp_2]

which, using (44), gives

—pln =D+ (n—1)’]
Ln-1)+(n—-12] - Z[(n+1)22n - 1) + (n+ 1)(2n — 1)?]

which is equal to,

—In(n—1) —(n-1) n—1

In(n—1) — 3=(n+1)(2n — 1)(3n) T n—1-(2n2+n-1) 2n?

For example, if n = 3 we get the mask
-5 20 10 -4
81727277 81
that is, we have the 4-point ternary scheme described in [2].
For n > 3 we also need to consider

POC = ke, k=1,2,...,[9J (46)

BOP =
© 2

n —

In that case we have
AOP=(n+k§ POC=(m-k)§ POD=2n—k) (47)
and working similarly to the case k = 1, we have to calculate

i 1— L[(n — k) coskf + k cos(n — k)6]
50 Ll(n — k) cos kb + kcos(n — k)8] — 3=[(2n — k) cos(n + k)8 + (n + k) cos(2n — k)6]

10



giving,

—% (n—k)kUg_1 + k(n — k)Up_j—_1]

li
o1 L[(n = B)kUg_1 + k(n — B)Un—t—1] — 2= (n + £) (20 — &)Ukt + (0 + k) (2 — k)Usn_p_1]
which gives,

—L[k2(n — k) + k(n — k)?] _ k(n —k)
%[kQ(n —k)+k(n—k)?] - %[(n +k)2(2n — k) + (n+ k)(2n — k)?] 2n2

3.3 6-point binary scheme

We give this example to illustrate the method using three linear combinations
and solving for two variables. Let A, B,C, D, E, F be equally distanced points
on the z-axis. The origin O is in the barycentre of the configuration, that is,

0OC=0D=a OB=0E=3a OA=OF=5a (48)

Under the standard stereographic projection on the unit circle, followed by a
reflection through the z-axis, the y-coordinate of the image A', B',C’', D', E', F'
of these 6 points will be
1-25a2 1-9a® 1—a® 1—a® 1-9a> 1-—25a>
1+25a2’14+9a2’ 14+ a2’ 1+a?" 1+ 9a?’ 1+ 2502
respectively. With the notation of (13), we choose

1
14:%@0+OD)1@=5w3+0E)1A=%@A+0m (49)

From (16) we get the equation

1—a? 1-—a? 1—9a2)+ (1—a2 1 — 25a2
_ a _

1+ a2 1+a2 1+9a2 1+a2 1+ 25a2

which after the calculations gives

—2a%(1 4+ 9a?)(1 + 25a?) + a116a2(1 + 25a?) + a248a?(1 + 9a?)

)—1=0  (50)

+ay(

=0 51
(14 a?)(1 4+ 9a?)(1 + 25a2) (51)
To make the coefficient of a? vanish we must have
-2+ 161 +48a5 =0 (52)
while the coefficient of a* vanishes if
—68 4+ 4001 + 432090 = 0 (53)
Solving the system we get
25 -3
o = ﬁ and Qo = ES (54)
and we get the mask
3 —-25 7 7 —-25 3
—_— Y, ——, —— (55)

2567 2567 1287 128’ 256’ 256

So, the scheme we get is the C? scheme described in [2]

11



3.4 /3-scheme

The v/3-scheme for triangular meshes was intoduced in [6]. In each step a new
vertex is inserted at the barycentre of each triangle, and every old vertex is
relaxed according to a linear combination of itself and its direct neighbours.
For symmetry reasons, we assign equal weights to each neighbour of P. Hence,
using the notation in [6], if P is a vertex of valency n and Py, Pi,. .., P,_1 the
vertices adjacent to P, the new position of P is given by

n—1

1
P =Q — )P +an > P (56)
i=0

To analyse the geometry of that scheme we suppose that P, Py, ..., P, all
lie on a sphere of centre O and radius 1. We also suppose that Fy,...,P,_1
are the vertices of a planar regular n-gon and P is the projection on the sphere
of the centre of the n-gon. Let also Fy, Fy,..., Fj,_1 be the barycentres of the
plane triangles PPyP,, PP, P;, ..., PP,_1 P, respectively.

We want to calculate a displacement P’ of P such that P', Fy ..., F,_; also
lie on a sphere, either on a sphere of radius 1 but with different centre O', or
on a sphere with centre O and radius r < 1.

(i) In the first case we have a displacement of the sphere along the z-axis.
We want to express it as a linear combination

= - - 1, - - -
OP'=0OP — a,(OP — E(OPO +OP, +---+ 0OP,_1)) (57)
It o .
6 — POR, = POP, = --- = POP,_, (58)

taking norms in equation (55) we have

|OP" — OP| = an(1 — cosf) (59)
giving
_ _|P'P|
™ 1—cosf (60)

We have |PP'| = |FyFj| where Fj is the intersection of the initial sphere with
the line parallel to the z-axis passing through Fy. See figure [5].

P, P

12



We will calculate |FoFg|. For convenience we write w = 2Z. In spherical

coordinates we have
P=(1,0,00 P=(1,60,0) P =(1,60,w) (61)
and so in Cartesian coordinates we get
P =(0,0,1) Py = (sinf,0,cos8) P, = (sinfcosw,sinfsinw,cosf) (62)

That means that

sinf(cosw + 1) sinfsinw 2cosh +1

Fy =
0 ( 3 ’ 3 ) 3

) (63)

So, the z coordinate of Fy is
2cosf +1

3

while from the equation of the unit sphere and the z,y coordinates of Fy we
have that the z-coordinate of F} is

(64)

\/1 sin? @(cosw + 1)2 + sin” @ sin® w

: (65)
That gives,
BoF| = 4[1— sin? @(cosw + 1)2 + sin? §sin® w ~ 2cosf+1 _
9 3
\/9 —2sin? f(cosw + 1) — (2cosf + 1)
= (66)
3
and finally (58) gives,
\/9 — 2sin® f(cosw + 1) — (2cosf + 1)
an = (67)
3(1 —cosb)
We can easily calculate that
. 4 —2cosw
jman = ——g— (68)
and so our analysis gives the same result as the eigenanalysis in [6].
(ii) In the second case where P’ Fy,...,F,_1 lie on the same sphere of

centre O, we have

2 202 2
1)2 2 1)2
|P’P|:1—|OF0|:1—\/sm O(cosw + 1) +sm9051n w+ (2cosf +1)

(69)
and

1— \/sin2 0(cos w+1)2+sin? fsin? w+(2 cos H+1)2
9

oy = =
n 1 — cosf

13



1— \/2 sin? §(cos w+1)+(2 cos H+1)2
9

a 1—cosd (70)

The limit as § — 0 is the same as in the case (i), and so we have two different
schemes with the same stationary limit, namely the v/3-scheme. The second,
with initial point data the vertices of a tetrahedron, octahedron, icosahedron,
and initial angle equal to the arc corresponding to the edge of that regular solid,
should produce a perfect sphere.

3.5 An interpolatory scheme for regular grids

As an example of how we can use the above methods to find new schemes we
will describe an interpolatory v/2-scheme. In each step a new point is inserted in
the centre of each face, calculated as linear combination of its nearest 16-points.
See figure [6].

R, Q, Q R,
Q, P, P, Q,
Q BB Q

R, Q Q R,

Then the every new vertex is connected with its 4 nearest neighbours, while the
original edges are removed causing a 45 degrees rotation of the grid. See figure

[7].

Original grid Grid after one step

Using the notation of section 2, we write

h:%ﬂ+5+&+ﬂ) (71)
Ly=§(Qu+ Qo+ Qs+ Qu+ Qs+ Qo+ Q1+ Qs) (72)
m:%m+m+m+m) (73)

and we form the linear combination

14



Ly + ai(Ly — L2) + aa(Ly — Ls) (74)

If @ is half the edge of the one of the 9 squares of the mask if figure [6], the
distances of the points P;, Q;, R; from the new inserted point are v/2,/10, v/18
respectively. So, (16) gives the equation

1— 2a? 1-2a®> 1-—10a? 1—2a®> 1-—18a?
_ — —1=0 (75
1222 T 02 T 10 Y00 T T isa? (75)
giving,
—4a? — 112a* — 720a® + a1 (164> + 288a*) + a2 (32a® + 320a*) 0 (76)
(14 2a2)(1 + 10a2)(1 + 18a2) B
and we obtain the system
—4 +16a; +32a2 =0
—112 +288a; +320as; =0
which has a solution
9 -5
-2 ” = —— 77
M=% T3 (77)

: 45 -9 5 .
Hence, the coefficients of the scheme are {53, 155, 755 for the points P, Q;, R;,

respectively.
Figure [8] shows the corresponding mask.

5/128 028 028 5/128

9/128 45128 45128 o128

-9/128 45/128 45/128 -9/128

5N28 928 928 528

To show the relation between the subdivision coefficients and the metric
of the parameter space we will calculate the subdivision schemes correspond-
ing to the li,lo metrics rather than the standard Euclidean l». In this case
the distances between O and P;, Q;, R; are 2,4,6, and 1,3,3 respectively. The
corresponding masks will be, see figures [9],[10]

140

-3/40

-3/40

1740

-3/40

15/40

15/40

3140

-3/40

15/40

15/40

3140

1140

340

3140

1140

15

1196

196

19

1196

9132

9132

-1/96

-1/96

932

9132

-1/96

-1/96

-1/96

-1/96

1196
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The interpolation of the vertices of a square with the 4-point binary scheme
with spherical and hyperbolic geometry for several values of 6.

Spherical geometry

oG

0=0 [4-point scheme] 0=m/8
0=mn/4 [Perfect circle] 0=37/8

Hyperbolic geometry

6=0 [4-point scheme] 0=0.5

o

0=1 0=1.5
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