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Abstract. We describe and demonstrate an arrow notation for deriv-
ing box-spline subdivision schemes. We compare it with the z-transform,
matrix, and mask convolution methods of deriving the same. We show
how the arrow method provides a useful graphical alternative to the
three numerical methods. We demonstrate the properties that can be
derived easily using the arrow method: mask, stencils, continuity in reg-
ular regions, safe extrusion directions. We derive all of the symmetric
quadrilateral binary box-spline subdivision schemes with up to eight ar-
rows and all of the symmetric triangular binary box-spline subdivision
schemes with up to six arrows. We explain how the arrow notation can
be extended to handle ternary schemes. We introduce two new binary
dual quadrilateral box-spline schemes and one new

√
2 box-spline scheme.

With appropriate extensions to handle extraordinary cases, these could
each form the basis for a new subdivision scheme.
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1 Introduction

For several years, the Cambridge subdivision research team have used an arrow
notation that allows easy derivation of the mask (Sect. 3.1), stencils (Sect. 3.2),
continuity (Sect. 3.3), and safe extrusion directions (Sect. 3.4) of all box-spline
subdivision schemes. It also permits enumeration of all possible box-spline schemes,
which has allowed us to generate three new schemes which, to the best of our
knowledge, have not yet been investigated.

The arrow notation is equivalent to other mechanisms for specifying box-
spline schemes but has the advantage that it is a graphical, rather than numer-
ical, notation, allowing easy visualisation of what is going on.

The notation has arrows of appropriate lengths pointing in the principal
directions of the scheme. For binary schemes, in z-transform space [1], each
arrow corresponds to a factor of (1 + z)/2 in the appropriate direction; for an
n-ary scheme, to a factor of (1− zn)/(n(1− z)).

We explain the arrow notation and the properties that can be derived from
it for univariate (Sect. 2) and bivariate (Sect. 3) binary subdivision schemes. We



use the simplest four-direction scheme (Sect. 3.6) as an example to demonstrate
the four ways of deriving a scheme’s mask: arrows, z-transform, matrix, and
mask convolution. We enumerate all possible binary quadrilateral schemes with
up to eight arrows (Sect. 3). We then consider the extension of the method
to longer arrows representing factors of 1 + z2 (Sect. 4), to triangular meshes
(Sect. 5), and to ternary schemes (Sect. 6). We conclude with suggestions for
further work (Sec. 7).

2 Univariate Binary Schemes

In one-dimension we would represent the cubic box spline as four arrows:

→→→→

which corresponds to 2((1 + z)/2)4. This leads to the Laurent polynomial (1 +
4z + 6z2 + 4z3 + z4)/8 which is itself the z-transform of the subdivision mask
[1, 4, 6, 4, 1]/8 which has the two stencils [1, 6, 1]/8 and [4, 4]/8. For the purposes
of this paper, we ignore the constant factor (in this case, one eighth) when it
gets in the way of clear exposition, as it is trivial to derive from the fact that
each stencil must sum to one.

Graphically, the arrow notation allows us to derive the mask directly by
finding a number of distinct combinations (N.B., not permutations) of arrows
which get us from the origin to each possible point on the number line. Label
each arrow individually:

a→ b→ c→ d→

There is one way to get to the origin (use no arrows), four to get to the first
position (use any one of the arrows: {a, b, c, d}), six to get to the second position:
{ab, ac, ad, bc, bd, cd}, four to the third: {abc, abd, acd, bcd}, and one to the fourth:
{abcd}. This is simple combinatorics and it parallels exactly the derivation of the
co-efficients on the polynomial product in the z-transform. The true usefulness
of the graphical notation does not become apparent until we consider bivariate
schemes.

Continuity can also be determined from the graphical notation. Again, this
is only truly useful when we consider bivariate schemes. Each arrow represents
an integration step. Each integration represents an increase in continuity by
one. You may prefer to think of this as each arrow representing a multiplication
by a factor of (1 + z)/2, or a single smoothing step [2] in a refine-and-smooth
formulation. In terms of the limit basis functions of the scheme, if there are no
arrows, then we have an impulse function. One arrow integrates this to a step
function, which is a function containing a discontinuity. A second arrow will
integrate this to produce a C0 function. From here, each extra arrow adds one
to the continuity. Thus, in the univariate case, continuity is two fewer than the
number of arrows.

Figure 1 lists the first four univariate box-spline subdivision schemes.
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Fig. 1. The linear, quadratic, cubic and quartic binary univariate box-spline subdivi-
sion schemes. It is straightforward to extend this to higher powers of (1 + z)/2.
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Fig. 2. The linear, quadratic and cubic tensor product bivariate box-spline subdivision
schemes.

3 Bivariate Binary Quadrilateral Schemes

The tensor product schemes are straightforward to calculate and to represent
in arrow notation (Fig. 2). While it is possible to have a different number of
arrows in the two primary principal directions, it is generally desirable to have
the same number in each, because to do otherwise leads to an asymmetry in the
subdivision scheme, which would effectively prevent the generalisation of the box
spline into a subdivision scheme with extraordinary vertices.

3.1 Deriving the Mask

The mask of a subdivision scheme shows the contribution of a single original
vertex to each new, subdivided vertex. To find the mask of a scheme, we need
to find all ways to get from the origin to each point in the grid. For the tensor
product schemes, this is simply the tensor product of the univariate case, as the
two principal directions are orthogonal.



The process is straightforward. Given the set of arrows for the scheme, find
where each possible combination of arrows takes us, and then count how many
combinations end up in each particular location. Take the cubic tensor product
bivariate box-spline scheme. If we label each arrow individually, then the process
is easy to follow:

h ↑
g ↑
f ↑
e ↑ a→ b→ c→ d→

There is one way to get from the origin to itself: use no arrows. There are four
ways to get to the next position across: {a, b, c, d}. There are sixteen ways to get
to the position above that: {ae, af, ag, ah, be, bf, bg, bh, ce, cf, cg, ch, de, df, dg, dh},
and so on.

For schemes with non-orthogonal arrows, the situation is rather more inter-
esting, and the arrows prove more useful. A detailed non-orthogonal example is
given in Sect. 3.6 and Fig. 4.

3.2 Deriving Stencils

The stencils of a subdivision scheme show how to make a new, subdivided vertex
from the surrounding original vertices. There are several stencils for any given
scheme, each corresponding to a particular type of new vertex.

From the mask, it is straightforward to derive the stencils. For any binary
bivariate scheme, there are four stencils, each derived as every second value on
every second row. This is illustrated in Fig. 3. For a ternary scheme there would
be nine stencils, each derived as every third value on every third row. Other
arities have similar rules. Strictly, the mask should be mirror-imaged about its
centre before extracting the stencils, but all masks in this paper are mirror-
symmetric so this is not necessary.

3.3 Continuity

Calculating the continuity needs some explanation. We need to know what con-
tinuity to expect across any edge in the final mesh. Arrows which point along

an edge cannot contribute to continuity across the edge. Therefore, to calculate
continuity, find the direction with the maximum number of arrows. Discard those
arrows and count the number of remaining arrows. Continuity is two fewer than
this number, for the reasons given in Sect. 2. All of the tensor product schemes
have the same continuity as their univariate counterparts. Note that we must
consider the edges with minimum continuity and so we cannot claim any higher
continuity for the scheme as a whole even if there are other directions where
fewer arrows would be discarded.

If we extend to trivariate subdivision, for example for Finite Element Mesh-
ing, then a similar argument holds. The continuity across boundaries can be
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Fig. 3. Deriving the four stencils from the cubic box-spline mask. Top left: vertex, top
right: horizontal edge, bottom left: vertical edge, bottom right: face centre. Each should
be divided by a factor of 64.

determined by selecting the plane that contains the maximum number of ar-
rows, discarding these arrows, counting the remaining arrows, and subtracting
two.

3.4 Safe Extrusion Directions

Lateral artifacts occur in the limiting surface if the original data is extruded in a
direction for which the z-transform of the mask does not have a (1+z) factor [3].
The arrow notation quickly allows one to see which are the safe directions: they
are the ones in which there is an arrow. For the tensor product schemes, there
are only two safe directions. Schemes with diagonal terms (Sect. 3.5) have four
safe directions. Triangular schemes (Sect. 5) have three or six safe directions.

3.5 Diagonal Terms

In addition to horizontal and vertical arrows, quadrilateral schemes can have
arrows on the 45◦ diagonals. These correspond to (1 + z1z2) and (1 + z2/z1).
We consider the horizontal and vertical arrows to be the primary principal direc-
tions, with the 45◦ arrows being the secondary principal directions. It is generally
desirable to have the same number in each of the two primary principal direc-
tions, as in the tensor product schemes, because to do otherwise leads to an
asymmetry in the subdivision scheme. Similarly, it is desirable to have the same
number of arrows in each of the two secondary principal directions. However,
it is not necessary to have the same number of arrows in the primary and sec-
ondary directions. For example, the tensor product schemes have no arrows in
the secondary principal directions.
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Fig. 4. Using the graphical arrow notation to derive the mask. At left we see all possible
paths from the origin to each of the twelve reachable points. At right is a count of the
number of paths, which is the mask of the scheme.

3.6 Four-arrow, Four-direction Scheme

The simplest box-spline subdivision scheme that uses diagonal terms is:

↑→տր

To find the mask of this scheme, we need to find all ways to get from the
origin to each point in the grid (Fig. 4). Alternatively, we can get the same
answer from the z-transform by expanding (1 + z1)(1 + z2)(1 + z1z2)(1 + z2/z1):
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2

Arranging the terms horizontally by increasing exponent on z1 and vertically by
increasing exponent on z2 produces an array where the coefficients on the terms
are the coefficients of the mask.

A third alternative is to use mask convolution. The four simple masks, each
of which represents a (1 + z) term or an arrow in a principal direction, are
convolved to produce the final mask.
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Fig. 5. The four stencils derived from the mask. All four are rotational variants of one
another.

The final alternative is to use Peters and Shuie’s matrix of directions [4]:

Asimplest =









1 0
0 1
1 1
−1 1









.

Each direction corresponds to one of the arrows in the arrow notation, to one of
the terms in the Laurent polynomial (z-transform), and to one of the masks in
the mask convolution method.

The four stencils of the scheme can be derived by taking every second row
from every second column, in the four possible ways this can be done (Fig. 5).

One of the interesting things about this scheme is that it can be factorised

into a
√

2 scheme. One step of that scheme being տր combined with the ro-

tation of 45◦, the next step being ↑→ with a further rotation of 45◦, which
realigns the subdivided mesh’s primary directions with the original mesh’s pri-
mary directions. This is the “simplest” subdivision scheme described by Peters
and Reif [5].

The mask ofտր is
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 . The two stencils are
[

1 1
]

for horizontal edges

and

[

1
1

]

for vertical edges. The mask of ↑→ is

[

1 1
1 1

]

. This is exactly the other

simple mask rotated by 45◦ and contracted by a factor of
√

2. Convolving the
two produces the mask of the binary scheme:
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.

To derive the continuity of the scheme, consider the direction with the great-
est number of arrows. There is one arrow in each of the principal directions,
whichever you choose. This leaves three arrows and the continuity is two fewer
than that. Therefore the simplest scheme has C1-continuity in regular regions.
It has four safe extrusion directions: the four principal directions.
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Fig. 6. Two examples of determining the mask entries using the arrow notation, for
the eight-arrow, four-direction scheme. Arrows carry an annotation “2” when there are
two possible arrows available. The number of possible combinations is shown under
each diagram.

In general, a binary box-spline scheme can be factored into a
√

2 scheme if
the arrows can be split into two sets, one of which maps onto the other by a
rotation of 45◦ and a dilation of

√
2.

3.7 Eight-arrow, Four-direction Scheme

In a similar way, we can evaluate the scheme with two arrows in each of the four
principal directions. This is equivalent to two steps of the 4–8 scheme described
by Velho [6].

↑
↑
→→տ

տ
ր
ր

This scheme has continuity C4. This is determined by finding the direction with
the greatest number of arrows (any one of the four principal directions), counting
the number of arrows not in this direction (six) and subtracting two.

The entries in the mask can be determined in any of the ways described above.
As an example, consider using the arrows to determine the entries. Figure 6 shows
the derivation of two of the entries in the mask by this method. Clearly the more
arrows there are, the more complex this procedure becomes and the less useful
as a mechanism for deriving the mask entries.

Like the four-arrow, four-direction scheme, this binary scheme is factorisable
into a

√
2 scheme:
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Fig. 7. The stencils of Velho’s 4–8 scheme [6] derived from its mask. There is one
stencil for introducing new vertices at face centres (left) and one stencil for moving old
vertices (right). Note that values in the mask and stencils must be divided by eight to
ensure that the values in each stencil sum to one.

The two
√

2 masks can be convolved to produce the mask of the binary scheme:
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You can easily extract Velho’s 4–8 stencils from the
√

2 mask (Fig. 7). However,
you need to note that there are only two stencils in a

√
2 scheme, compared

with four in a binary scheme. Clearly, you could extract four stencils from the
binary mask, and thus directly create a binary scheme. This would, however,
produce stencils which are large. Large stencils make it more difficult to create
mechanisms for the efficient handling of extraordinary vertices, edges and creases
in the mesh.

3.8 Six-arrow Schemes

There are two schemes which each have six arrows with at least one in each of
the four principal directions, and which each produce smaller stencils than the
binary version of Velho’s 4–8 scheme.

The first of the two six-arrow schemes is the quadrilateral part of Peters and
Shiue’s 4–3 scheme [4]. In arrow notation it is:

↑
↑
→→տր

From this we can see that the scheme is C2 in regular regions. It has the mask:
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and the four stencils:
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As illustrated in Sect. 3.6, the arrow notation is a straightforward graphical
representation of the matrix of directions as used by Peters and Shuie [4]:

A△ =
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−1 0
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0 −1
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.

This corresponds to the arrow notation:

↑
↓→←
տր

A shift of origin makes no difference to the resulting mask, so this is equivalent
to:

↑
↑
→→տր

We prefer the latter version, where all of the arrows which lie on the same line
point in the same direction, as we believe that this makes the notation clearer.

The other six-arrow box-spline is:

↑→տ
տ

ր
ր

which is clearly also C2 in regular regions. This has the mask:
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and its four stencils are all rotational variants of:
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This is a dual binary quadrilateral subdivision scheme, making it most closely
related to the quadratic tensor product box spline (C1, Doo-Sabin [7, 8]) and
the quartic tensor product box spline (C3) [9, 10]. This second six-arrow box
spline has never been extended to handle extraordinary cases, edges, or creases.
We expect that this could be done reasonably easily, given the simplicity of the
stencil.

Note that neither of the six-arrow schemes can be factorised into a
√

2 scheme,
because neither meets the criteria described at the end of Sect. 3.6.

3.9 More Arrows — Larger Stencils

It is clearly possible to add more arrows. For example, adding two more arrows
to either Peters and Shiue’s 4–3 scheme or the Doo-Sabin scheme produces an
eight-arrow box spline:

↑
↑
↑

→→→տր

This is C3. Its mask is:
















1 3 3 1
1 6 13 13 6 1
3 13 24 24 13 3
3 13 24 24 13 3
1 6 13 13 6 1

1 3 3 1

















and its four stencils are all rotational variants of:
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This is yet another dual binary quadrilateral subdivision scheme. This eight-
arrow box spline has never been extended to handle extraordinary cases, edges,
or creases.

The final binary quadrilateral scheme with eight arrows is:

↑→տ
տ

տ

ր
ր
ր

This is C3 and has a large mask:
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Fig. 8. The stencils of the five dual quadrilateral binary box-spline schemes with masks
of up to 3 × 3. All stencils have the common denominator of 256 to allow easy com-
parison. From left to right: simplest (C0) [5], Doo-Sabin (C1) [7, 8], six-arrow (C2),
eight-arrow (C3), quartic tensor product (ten-arrow, C3) [9, 10].

and a large stencil:








1
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1 12 18 4
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This is another binary dual scheme. In this case, the stencil is so large as to
make it difficult to generalise to extraordinary cases.

Consider all of the dual schemes with stencils up to size 3 × 3. We know,
simply by enumerating all possible combinations of arrows, that there are only
five of them (ignoring the trivial case which has just two arrows and which does
not produce a limit surface). If we use a common weighting factor of 1/256, then
the stencils are as shown in Fig. 8. The largest is the biquartic box-spline, for
which extraordinary cases were considered by Qu [9], Zorin and Schröder [10].
It is not clear what, if any, advantage would be gained from the three larger
stencils, compared with the two smaller ones. It would be interesting to have all
five implemented, and compared against one another, and for mechanisms to be
developed to handle extraordinary cases, edges and creases for the six-arrow and
eight-arrow schemes.

4 Longer Arrows

It is possible to create schemes with squared or higher terms of z in their z-
transform. In the arrow notation these are represented by longer arrows. For
example (1 + z2) is represented by an arrow of twice the length of that repre-
senting (1 + z).

The most interesting place where such a binary scheme arises is when we
consider a

√
2 scheme with the arrow symbol:

↑→տր

This is the same symbol as for the binary simplest scheme (Sect. 3.6). However,
it can also be implemented as a

√
2 scheme in its own right. This is done by

deriving two, rather than four, stencils from the mask (Fig. 4). The stencils are



read off from the mask at 45◦. Rotating them by 45◦, the two stencils are:

[

1 2 1
1 2 1

]





1 1
2 2
1 1





for new vertices at the nominal centres of the vertical and horizontal edges
respectively. This is straightforward to implement and it should be relatively
straightforward to generalise to the extraordinary cases, edges and creases.

Taking the convolution of two
√

2 steps, where the second step is rotated by
45◦ and dilated by

√
2, gives a binary scheme with arrow symbol:

↑
→տր ∗ ↑→տր =

↑

↑

→ →տ
տ

ր
ր

and with z-transform (1+z1)(1+z2
1)(1+z2)(1+z2

2)(1+z1z2)
2(1+z2/z1)

2. Note
the positions of the exponents both inside and outside the parentheses.

The mask of this binary scheme is:
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Note the four entries of “1” along each of the horizontal and vertical edges.
This is the most obvious indication that those double length arrows are doing
something different to that observed when only single length arrows are used.

The stencils of the binary scheme are the four rotations of:









3 5 2
1 10 14 5
1 8 10 3
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This is a big stencil and, thus, one would not expect to implement it as a binary
scheme nor try to extend the binary scheme to extraordinary cases. Instead, as
with 4–8, any such extension would be implemented for the

√
2 scheme.

While this scheme is certainly valid there is an interesting question, when
determining the continuity, as to how those double length arrows contribute
towards continuity. If they contribute as for single length arrows, then the scheme
is C4 in regular regions. If not, it is almost certainly at least C2. Analysis of
these double length arrows is best done in the univariate case in a similar way



to that done by Dyn [11] and Hassan [12]. Regardless of whether it is C4 or
C2 in regular regions, the scheme would benefit from further investigation and
extension to extraordinary cases.

We note, in passing, that it would also be possible to have “knight’s move”
arrows. It is unclear what the implications of these would be. Would they provide
extra safe extrusion directions? Would they contribute towards higher continu-
ity?

5 Triangular Schemes

Triangular schemes have six principal directions, three primary and three sec-
ondary, but are otherwise handled in much the same way as for quadrilaterals.
Two of the primary directions are (1 + z1) and (1 + z2). It is a matter of con-
vention whether the third primary direction should be treated as (1 + z1z2) or
(1 + z2/z1), depending on whether you prefer the positive z1 and z2 axes to be
separated by 60◦ or 120◦. Note that (1 + z2/z1) can be shifted to (z1 + z2) if
you prefer only non-negative powers of z. The shift has no effect on the resulting
mask.

The simplest box-spline triangular scheme, linear interpolation, is C0, has

the arrow symbol and the mask:

1 1
1 2 1

1 1

The next simplest, Loop subdivision [13], is C2 in regular regions, has the arrow

symbol and the mask:

1 2 1
2 6 6 2

1 6 10 6 1
2 6 6 2

1 2 1

We can introduce secondary principal directions with the six-arrow symbol

. This has the binary mask:

1 1
1 2 2 2 1

1 2 4 4 2 1
2 4 4 4 2

1 2 4 4 2 1
1 2 2 2 1

1 1



Arrows z-transform Mask Continuity

→→ 3
(

(1+z+z
2)

3

)2
1
3
[1, 2, 3, 2, 1] C0

→→→ 3
(

(1+z+z
2)

3

)3
1
9
[1, 3, 6, 7, 6, 3, 1] C1

→→→→ 3
(

(1+z+z
2)

3
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Fig. 9. The linear, quadratic, and cubic ternary univariate box-spline subdivision
schemes.

with four stencils, one for the vertex and three rotational variants for the three
edges:

2 2
2 4 2

2 2

1 2 1
4 4

1 2 1

However, a binary scheme cannot be factorised into two
√

2 steps, because
there is no way to construct a triangular

√
2 subdivision scheme [14, 15]. Indeed,

the longer arrows are
√

3 the length of the shorter arrows, rather than
√

2. To
get a factorisable version, you must construct a ternary scheme, which can be
factorised into the convolution of two

√
3 steps.

6 Ternary and Higher Arities

The arrow notation extends to box-spline schemes of higher arities. For example,
the ternary arrow →, which looks identical to the binary arrow, corresponds to
(1+ z + z2)/3. This means that there are three possible ways in which the arrow
can be used: no translation, a translation of one unit, and a translation of two
units. Compare this with the binary arrow, which corresponds to (1+z)/2, where
we can interpret it as either translation of one unit or no translation, which is
equivalent to either using the arrow or not using it. So long as we remember
that the geometric interpretation of the ternary arrow is somewhat different, we
can proceed as for the binary case. In general, the n-ary arrow corresponds to
(1− zn)/(n(1− z)) which is (1 + z + · · ·+ zn−1)/n.

6.1 Ternary Univariate Schemes

As for the binary univariate schemes, we can list the possible ternary univariate
box-spline schemes (Fig. 9). Remember that each of these schemes has three
stencils, obtained by taking every third element from the mask. For example,
the cubic ternary scheme has the three stencils 1

27 [1, 16, 10], 1
27 [4, 19, 4], and

1
27 [10, 16, 1]



6.2 Ternary Bivariate Schemes

All of the derivations which work for the binary schemes also work for the ternary
schemes. For example, we can easily derive the ternary mask for the arrow symbol

. This produces the ternary version of Loop subdivision [16] which has
the mask:

1 2 3 2 1
2 6 10 10 6 2

3 10 20 24 20 10 3
2 10 24 36 36 24 10 2

1 6 20 36 45 36 20 6 1
2 10 24 36 36 24 10 2

3 10 20 24 20 10 3
2 6 10 10 6 2

1 2 3 2 1

Selecting every third entry on every third line generates the stencils shown below,
along with the five rotations of the second stencil and the one rotation of the
third stencil:

6 6
6 45 6

6 6

2 10
1 36 20

2 10

3 24 3
24 24

3

These stencils are for new vertices at the vertex, a third of the way along an
edge, and face centre respectively.

We can also generate the ternary version of the six-arrow, six-direction box

spline, with arrow symbol . This has the mask:

1 1 1
1 2 3 3 2 1

1 2 4 6 7 6 4 2 1
1 3 6 9 11 11 9 6 3 1

1 3 7 11 15 16 15 11 7 3 1
2 6 11 16 19 19 16 11 6 2

1 4 9 15 19 21 19 15 9 4 1
2 6 11 16 19 19 16 11 6 2

1 3 7 11 15 16 15 11 7 3 1
1 3 6 9 11 11 9 6 3 1

1 2 4 6 7 6 4 2 1
1 2 3 3 2 1

1 1 1



This can be factorised into two
√

3 steps, which are much simpler to evaluate.

1
1 1

1 2 1
2 2

1 3 1
2 2

1 2 1
1 1

1

∗

1 1 1
1 2 2 1

1 2 3 2 1
1 2 2 1

1 1 1

The stencils which can be derived from these
√

3 masks are:

1 1
1 3 1

1 1

1 2 1
2 2

1

for new vertices at the vertex and face centre respectively. Note that this is not

the Kobbelt
√

3 scheme [17] and that the Kobbelt scheme is not a box-spline
scheme.

7 Summary

The four different methods of deriving subdivision masks all have their benefits.
The arrow notation is useful in that it is a graphical, rather than strictly math-
ematical, representation and in that it allows us to read off the continuity of the
box-spline scheme directly. It also allows us to enumerate all possible schemes
easily by forming all possible combinations of arrows. This paper has shown
all possible symmetric binary quadrilateral schemes which have up to eight ar-
rows, and all possible symmetric binary triangular schemes which have up to six
arrows.

There are interesting small projects that could be tackled, arising from this
work, each involving investigating the generalisation of a box-spline scheme or
schemes to the extraordinary cases, edges and creases. They are:

1. an investigation of the family of dual quadrilateral binary box-spline schemes
illustrated in Fig. 8;

2. an investigation of the
√

2 scheme described in Sect. 4, including considera-
tion of the effect of arrows which are longer than the shortest primary and
secondary arrows; and

3. an investigation of the
√

3 scheme described at the end of Sect. 6.
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