
MOTION BLENDING USING A CLASSIFIER SYSTEM

Tony Polichroniadis and Neil Dodgson
Computer Lab

New Museum Site
University of Cambridge

Pembroke Street
Cambridge

England

tpp21@cam.ac.uk http://www.cl.cam.ac.uk/users/tpp21
nad@cam.ac.uk http://www.cl.cam.ac.uk/users/nad

ABSTRACT

Motion blending is commonly thought of as creating the transition of an animated
figure to the first frame of a piece of motion. We describe a new way of thinking about
motion blending by removing the assumption that each piece of motion must start at
the first frame. We describe a classifier system that finds the nearest match in a set of
animation frames to a given state of an animated figure and show how this classifier
can be used to create better motion blends. We also describe how the parameters for
this system were optimised using a genetic algorithm.

The classifier given was found to be efficient enough to work in real time with many
articulated figures.

CR Categories: I.3.7 [Computer Graphics]: Animation

Keywords: computer animation, motion control, human figure animation, motion-
blending.

INTRODUCTION

With the current trend of building libraries
of human motion segments it is becoming
increasingly important to find robust ways
of creating the transitions between arbitrary
pieces of captured motion in order to create
long, visually correct animations.

We describe a new way of thinking about
motion blending by removing the

assumption that each piece of motion must
start at the first frame. We describe a
classifier system that finds the nearest
match in a set of animation frames to a
given state of an animated figure and show
how this classifier can be used to create
better motion blends.

The following is a formal description of
what we mean by finding a motion blend.
The human figure’s state is given as some

nad10
Proceedings of the 7th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media '99 (WSCG '99), University of West Bohemia, Plzen, Czech Republic, 8-12 February, 1999. Editor: Vaclac Skala. ISBN: 80-7082-490-5 Pages: 225-232.

point in joint angle space (dofℜ=ρ) and a
position and orientation of the root (an
arbitrary point on the figure, we choose it
to be the base of the spine). Joint angle
space is the orientation of each of the joints
in an animated figure and dof is the number
of degrees of freedom of the figure. We are
given the following:

• An initial position of the
figure{ }ρ∈II | .

• An initial rotational velocity of the

figure’s d.o.f.s:

 ∈

dt
d

SS
ρ

|

• A segment of motion, time from 0 to t1:
{ }ρ∈∈ℜ∈)(],,0[,|)(1 tMttttM , i.e.
how the joints vary over time.

• A set of times, indexed from 0 to i1:
{ ,],,0[,| 1 ℜ∈∈ℵ∈ ii KeyiiiKey

],0[1tKeyi ∈ }, which are called
keyframes.

A good choice of keyframes is important to
our motion-blending algorithm. They must
represent important points in the motion
such as turning points.

Now we must define a new sequence of
motion:)(tB , that blends from I into M .
We make no assumptions about how long
B is, or the position of the root at the end
of B . This is very important to our design
philosophy. For example, in the case of
walking we believe that, if an autonomous
actor's body is put into some initial state
and then told to walk, the computer should
decide where its first footstep lies.

The remainder of this paper is split into 6
sections. Section 1 describes previous work
on this problem to show where we fit into
other research. Sections 2 and 3 describe
our algorithm for doing motion blending.
Section 4 describes how we optimised the

parameters to this algorithm. Section 5
describes our implementation of this
system, and finally, Section 6 rounds off
the paper and describes possible further
work.

 BACKGROUND

The majority of solutions to this approach
have relied on having previous knowledge
of the set of basis motions. They will
either:

1. Make sure that the end of one piece of
motion perfectly fits into the start of the
next piece.

or

2. Have a previously created library of
motions that blend from the end of any
piece of motion to the start of any other
[Moraw90a].

The first approach requires laborious hand
crafting, in all but the simplest situations.
The second approach requires a number of
blends that increases as the square of the
number of pieces of motion.

They both have the disadvantage of
requiring all the pieces of motion to be
enumerated, precluding the possibility of
hand animating any parts of the animation
or having animation automatically
generated in real time. To put it simply, the
animator is stuck with the library of
animations for which blends have been
computed. They both also face the problem
that the basis motions must fully complete
before changing to a different piece of
movement.

Several other groups have attempted to
solve the general motion-blending problem
by designing an algorithm that creates an
interpolation between pieces of motion.
This has been approached by couching it as

an optimisation problem [Rose96a] or as a
signal-processing problem [Brude95a,
Witki95a, Unuma95a].

In contrast to the other methods, we think
of the motion blending as having a second
part in addition to the interpolating system.
Before the interpolator is called, a classifier
system finds the closest match in M to I.
The match can then be used by the
interpolator to create a better motion blend
by missing out superfluous frames from M.

For instance, consider a throwing motion:
the hand is pulled back, then moved
forwards fast. If in I the arm is already
pulled back part of the way, then the blend
should be from the partially pulled back
position to fully pulled back, and then the
throw. The classifier removes the need to
move forwards in between, something
which all previous methods would have
insisted upon.

This process works best for looped motion
(such as walking), because the blend does
not need to reach a specific position exactly
at the end, as long at it tends towards the
correct motion. For motion that isn’t
looped, for instance a triple jump, it still
works well, as the matches found are often
very good. However, a constraint must be
imposed that forces the matching procedure
to give results that lie within certain
bounds within M. For instance, in the case
of the triple jump, a match in mid-skip
would be no good.

THE CLASSIFICATION
ALGORITHM

This section describes the algorithm used
to find the closest matching set of joint
angles in a short piece of motion. We use
joint angles as the input, as this gives the
classification algorithm more information
than end effector position alone. After

trying many standard classifier systems,
such as neural nets, we settled on a system
that works on three levels. A rough guess
is made for each limb. Then the whole
body is examined to see if it is possible to
classify it under one value of t. Finally, a
refinement to the answer is made by each
joint so that they all have individual
guesses of t.

It is important to point out that while this
classifier is not provably correct, it works
very well in practice.

 Macro frames
The first step in the algorithm is performed
at the limb level. It tries to find out what
stage in the animation each limb is nearest,
to the resolution of the nearest key frame,
(we call this guess tl). This is done by
scoring each keyframe in the animation by
summing a weighted squared difference
between that keyframe’s joint angles, and
the actual joint angles of I and a squared
difference between the keyframe’s joint
velocities and the actual joint velocities:

=)(iP KeyScore

=)(iV KeyScore

∑
∈∀

−
dofd

v dSdweight][(*][2))(id KeyDiff

Where:

)/(]))[(])[((

)(

11 −− −−
=

iiii

id

KeyKeydKeyMdKeyM

KeyDiff

For more discussion of the weights, see the
Parameter Optimisation section1.

1 In this paper, reference is often made to a specific
limit or special scaling factor. These values are all
discussed in the Parameter Optimisation section.

∑
∈∀

−
dofd

iP dKeyMdIdweight 2]))[(][(*][

We wish to find the keyframe that would
best follow I. The lowest weightp gives the
nearest keyframe to I. As the velocity term
describes transitions between keyframes,
the smaller of weightv and weightv+1 will be
used to decide if the correct keyframe2 is
Keyi or Keyi+1, i.e. velocity is used to
determine if the figure is approaching or
leaving the nearest keyframe.

 Co-ordination
After a rough guess has been made for each
of the limbs, control is passed to the top
level. At this point limbs can decide to
change their guess of tl to one guessed at by
another limb. This is done by finding the
most confident limb (the one with the
lowest scorep), and suggesting that the
other limbs change to that limb’s keyframe.
Each will do so if its time differs by more
than a fixed constant from the most
confident limb, and the drop in confidence
is lower than another fixed constant.

This is important in the case of creating a
blend from standing still into walking. In
the standing position both legs are in the

2 It is assumed that all arithmetic with frame
numbers in looped motion is to be done modulo the
number of frames, so it should read

1mod)1(iiKey +

support position, which means one leg is
half way through the animation compared
to the other. By making the decision to
make both legs choose the same time we
don’t get awkward postures while one leg
‘catches up’ with the other. The picture
above shows how a leg can smoothly
transition into the middle of the walking
motion after co-ordination has chosen a
single point in time for the whole figure.

Refinement
Now, each d.o.f. has the opportunity to
give a better estimate for its own individual
guess at the time (denoted by td). As the
guess made by each limb is the
immediately following keyframe, it is a
matter of calculating how long it should
take for each d.o.f to reach that keyframe.
The value can be subtracted from the initial
guess to give a better estimate.

The amount of time it takes for a joint to
reach its keyframed value depends on two
factors:

• The time it takes to reach the required
joint position, which we approximate
by:

))((

/]))[(][(

i

iid

KeyDiffAbs

dKeyMdIAbsKeyt −−=

• The amount of time it takes to match
velocity with the keyframe’s required
velocity, which we approximate by:

))((/]))[(][(idtd KeyDiffAbsdtMdSAbst ∂
∂−=−

This gives a time estimate for individual
joints that is higher granularity than the
initial keyframe estimate.

 CALCULATING THE MOTION
BLEND

As can be seen from the algorithm
described above, each d.o.f. calculates its
own value of td. The question this section
resolves is how we use these values to
compute a motion blend.

Before doing so, we must introduce the
concepts of Front and Furthest. Front gives
the time in M that I is closest to, and
Furthest is the time in M that is furthest
away from Front but is still a possible
estimate.

Computing Front and Furthest is trivial in a
non-looped animation. They are simply the
maximum and minimum values of td,
(Shown in Figure 1).

Figure 1.

For a looped animation, one must find the
smallest range of time in looped space that
encloses all td. Furthest and Front are then
the d.o.f.s at the start and end of the set,
(Shown in figure 2). In a tie (two d.o.f.s
with the same td), the decision can be made
arbitrarily.

Figure2

Any of the methods described in Section 1
could be combined with the classifier. All
of the methods described naively assume t
= 0 for all d.o.f.s in the figure. To take
advantage of the classifier, one must blend
into the position at t = Front. To show why,
we consider looped and non-looped motion
separately.

 In the non-looped case, it is obvious to see
that any choice other than Front would
result in the Front d.o.f. going backwards
to catch up with the choice, then forwards
again when the rest of the animation is
played.

In the looped case, we are trying to
minimise the worst difference between any
individual td and the time chosen for the
whole figure. This is an equivalent problem
to choosing Front.

The number of frames allocated for the
blend will depend on the time between
Furthest and Front. In other words, if they
are far apart, then it will take longer for
Furthest to catch up with Front.

The calculated td can be used further to
compute an even better blend. If there are
keyframes between any td and Front, then
the blend can go via those keyframes,
instead of just moving straight into

position.

In the above example, the figure starts off
in the awkward position of having the left
leg thrown back, and is made to walk. The
algorithm decides the right leg is in the
support phase, and the left leg is nearest the
back swing. In order to blend into walking,
the figure must swing the left leg forward.
By using the in between keyframes as
hints, it knows to bend at the knee when it
comes forward, instead of just throwing its
leg forward, straight.

Furthest Front

FurthestFront

maximum seperation
Minimal spanning set

By using the algorithm shown we found
that no further optimisation was needed to
create realistic looking blends. Simply
using Hermite curves to create smooth
transitions is enough. However, we are
only interested in looking at motions in
which dynamics takes a limited
participation. For blending movement in
sports, for instance, it is more likely that
the figure will end up in dynamically
unfeasible positions, or unbalanced. More
research would be needed to give this
algorithm the concept of dynamics.

 PARAMETER OPTIMISATION

As we mentioned at the start of the article,
there are many parameters to this
algorithm. The parameters include the
weights for the d.o.f.s. and constants for
the co-ordination algorithm. A more in
depth discussion of the specific parameters
is given in Appendix A.

To determine good values for these
parameters, we formulate the selection of
these parameters as an optimisation
problem. As all the parameters are
contributing to the algorithm in a non-
trivial manner, standard optimisation
approaches are not applicable. We have
decided to use a genetic algorithm to
optimise the parameters [Back96a]
[Goldb89a]. In order to do this, we must
decide on a measure of fitness for a set of
parameters. It was decided that one
definition of a good motion blend was one
that managed to get the figure into a useful
state as soon as possible.

Please note that this is subtly different from
getting the figure to move as quickly as
possible. The algorithm has no ability to
change how fast the joints transition, just
what they transition to. This is because the
angular velocity is decided by the
refinement algorithm, that chooses how far

away each joint is from its required
position, and hence the minimum amount
of time for the transition. In other words,
we are optimising the controller to make
decisions that do not result in the figure
going into pointless positions while
blending.

An alternative to optimising for an efficient
controller would be to optimise towards a
minimal torque solution, i.e. one that
favoured blends that required the smallest
amount of energy to be used.

To characterise our requirement, we set the
figure into a number of random start states,
then blended it into a walk motion. The
fitter sets of parameters would get the
figure walking sooner than unfit sets, so the
further the figure walks, the better the set
of parameters. Fitness was hence defined
as))max(0.1/(0.1 idistdist −+ because this
gives small improvements in distance a
large enough genetic advantage.

After running the genetic algorithm, the
new set of parameters found resulted in the
character moving 1.5 times further than our
initial choice. Visually, the motion was
more convincing.

 IMPLEMENTATION

The described algorithm was implemented
in C++ on top of our agent based animation
environment, Jake. The parameters for the
genetic algorithm are shown in Table 1.

Parameter Value
Population Size 50
Number of random positions 100
Number of generations 50
Mutation probability 1%

Table 1.

The genetic algorithm took roughly 3 hours
to complete on 195MHz R10000. The

classifier takes around 200 milliseconds, on
an eight keyframe animation, on the same
computer.

The results of the genetic algorithm
showed up some interesting features. For
the hip values, which were duplicated on
the left and right hand side of the body,
each time we ran the algorithm they came
up with identical values (within statistical
error). However, the knee and ankle values
varied. This is likely to be due to there
being a wide range of values that could be
possible for the knee and ankle weights,
while the hip values were more constrained
as to the values they could take.

 FURTHER WORK

The above algorithm works very well in
cases where the initial position is fairly
close to a position in the animation.
However in starting positions that are
completely different from any position in
the animation the method cannot be
expected to perform as well. For instance,
in the case where the figure is lying down
on the floor, and it is asked to blend into a
walk, you could not expect it to formulate
the complex piece of motion involved in
getting up off the floor. We propose that
the concept of a basis motion is redefined
as multiple segments of motion that all
converge on the last frame of the
animation. For instance a walk could be
defined as: the looped walk, a blend from a
crouch into a walking stance, and lying
down into a crouch. In this way we can
more fully span the space of figure states.
As long as the figure starts off in a state
that is ‘near’ to one of the branches of the
tree, a good blend will be ensured.

An alternative approach would be to create
libraries of blends for which the algorithm
could parasite. Using our nearest match
algorithm, the most appropriate blend

would be chosen automatically. Work
would have to be done in co-ordinating
limbs so that they chose frames from the
same blend.

 APPENDIX A: PARAMETERS TO
THE ALGORITHM

This section discusses the parameters to
our implementation of the system described
in the paper. These are given as example
parameters. As the specific algorithms for
certain parts of this system are not given, a
different implementation may need
different parameters.

The proportional weightings for the
degrees of freedom (as discussed in Section
2.1) will always be needed. Their values
are given in Table 2.

Name Weight Value
Weightp[hip] Hip position 5.5
Weightp[knee] Knee position 0.2
Weightp[ankle] Ankle position 0.05
Weightv[hip] Hip velocity 0.36
Weightv[knee] Knee velocity 0.12
Weightv[ankle] Ankle velocity 0.01

Table 2.

 In our implementation, the only other part
of the algorithm that was parameterised
was the co-ordination phase (Section 2.2).
The decision criteria was:

if(Confidence lost < BribeFactor
AND Difference in tl >
SuggestFactor)

ChangeFrameToSuggestedOne()

BribeFactor was found to be 1.1 and
SuggestFactor was found to be 0.05
seconds (Remember, the smallest, nonzero
value for the difference in tl’ s, at this stage
in the algorithm, is only going to be as
small as the smallest difference between
any two iKey s).

 ACKNOWLEDGEMENTS

I would like to thank the Rainbow Group
for their continued support and good
humour with the Jake project. I would also
like to thank the EPSRC for their
sponsorship during this research.

REFERENCES

[Brude95a] Armin Bruderlin and Lance
Williams: Motion Signal Processing in
Computer Graphics (SIGGRAPH ’95
Proceedings), 1995 pp.97-104

[Witki95a] Andrew Witkin and Zoran
Popovic Motion Warping in Computer
Graphics (SIGGRAPH ’95 Proceedings),
1995, pp.105-108.

[Unuma95a] Munetoshi Unuma, Ken
Anjyo and Ryozo Takeuchi Fourier
Principles for Emotion-based Human
Figure Animation in Computer Graphics
(SIGGRAPH ’95 Proceedings), 1995
pp.91-95

[Rose96a] Charles Rose et al. Efficient
Generation of Motion Transitions using
spacetime constraints. in Computer
Graphics (SIGGRAPH ’96 Proceedings)
1996, pp.155-162

[Moraw90a] Claudia L. Morawetz and
Thomas W. Calvert: Goal-Directed
Human Animation of Multiple
Movements in Graphics Interface’90
pp.60-67

[Back96a] Thomas Back: Evolutionary
algorithms in theory and practice:
evolution strategies, evolutionary
programming, genetic algorithms
Oxford: Oxford University Press, 1996

[Goldb90a] David E Goldberg. Genetic
algorithms in search, optimization, and
machine learning Reading, Mass.;
Wokingham: Addison Wesley, 1989.

