
A new point cloud simplification algorithm
Carsten Moenning

Computer Laboratory
University of Cambridge
15 JJ Thomson Avenue

Cambridge CB3 0FD - UK
email: cm230@cl.cam.ac.uk

Neil A. Dodgson
Computer Laboratory

University of Cambridge
15 JJ Thomson Avenue

Cambridge CB3 0FD - UK
email: nad@cl.cam.ac.uk

ABSTRACT
We present a new technique for the simplification of point-
sampled geometry without any prior surface reconstruc-
tion. Using Fast Marching farthest point sampling for im-
plicit surfaces and point clouds [1], we devise a coarse-to-
fine uniform or feature-sensitive simplification algorithm
with user-controlled density guarantee. The algorithm is
computationally and memory efficient, easy to implement
and inherently allows for the generation of progressive and
multiresolution representations of the input point set.
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1 Introduction

Due to recent advances in surface acquisition techniques,
3D object boundary surfaces are now commonly acquired
with submillimeter accuracy. The initial output of ac-
quisition devices such as laser range scanners therefore
generally consists of point clouds of considerable redun-
dancy. As part of a typical mesh processing pipeline, these
point sets are converted into polygonal mesh representa-
tions of substantial size with the help of often computation
and memory demanding surface reconstruction algorithms.
The size of the resulting meshes frequently makes any fur-
ther processing without prior and often costly mesh simpli-
fication impossible.

Point cloud simplification represents an attractive al-
ternative to this process. By simplifying the point set
first, any subsequent surface reconstruction becomes sig-
nificantly faster and mesh simplification becomes obso-
lete. Point cloud simplification tends to be computation-
ally more efficient and less memory demanding than mesh
simplification since no mesh data structures need to be
maintained. Furthermore, with the increasing availability
of powerful point-based modelling [2], multiresolution [3]
and visualisation [4, 5] techniques, the simplification of
dense point clouds for subsequent point-based rather than
polygonal mesh-based processing is of significant interest
by itself.

Subject to a user-controlled minimum density con-
dition, we therefore consider the problem of simplifying

a densely or non-uniformly distributed unstructured point
cloud, P = {p1, p2, . . . , pN1}, to a target model size
N2 < N1. The point set is assumed to represent the surface
of a smooth, two-manifold boundary of a 3D model.

1.1 Previous Work

Dey et al. [6] present a point cloud simplification algo-
rithm with user-controlled density guarantee which detects
redundancy in the input point cloud with the help of the
“Cocone” and local feature size [7] concepts. The deci-
mation is inherently sensitive to changes in local curvature
and supports high-quality reconstructions. The algorithm
does not allow for adaptive decimation driven by changes
in a measure other than or in addition to local curvature.
The method requires the computation and maintenance of
3D Voronoi diagrams and tends to be computationally and
memory expensive.

Boissonnat and Cazals [8] introduce a coarse-to-fine
point cloud simplification approach. Their algorithm takes
a random initial subset of the input point cloud and uses
its 3D Delaunay triangulation to define a signed distance
function over the set. This implicit function is then used to
enlarge the initial set until a significant number of points
is found to lie within a user-defined approximation error
tolerance. In the second and final step, the enlarged sub-
set is Delaunay-triangulated [12] and a surface mesh is re-
constructed. If this initial surface does not meet the error
condition, additional points are inserted iteratively sorted
by their distance to the closest surface facet. The method
thus delivers both a reconstructed and simplified mesh si-
multaneously. The algorithm’s point cloud simplification
step is costly due to the construction and maintenance of
a 3D Delaunay triangulation. Given the increasing useful-
ness of point-based processing, the algorithm’s restriction
to triangular meshes as output seems undesirable.

Linsen [2] associates an information content measure
with every input point and subsequently removes points
featuring the lowest entropy. His information measure al-
lows for local curvature and RGB colour changes. The
algorithm is simple and produces visually appealing re-
sults but gives no guarantees on the density of the output
point set. Extremely non-uniformly distributed input point
sets will therefore necessarily result in simplified point sets
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of insufficient density. Similarly, even highly dense input
point clouds may be simplified to prohibitively unevenly
distributed output point sets. In either case, resampling of
the input cloud may be necessary to support any effective
further processing.

In an important paper, Pauly et al. [9] adapt various
widely used mesh simplification techniques to the point
cloud simplification scenario. Their quadric error-based it-
erative simplification method produces point sets with low
approximation error but is very sensitive in execution time
to the size of the input point set. The authors’ particle simu-
lation technique also results in point sets of low average er-
ror but is generally relatively inefficient to compute. Pauly
et al. [9] uniform incremental clustering method is compu-
tationally efficient at the expense of a relatively high av-
erage approximation error and is not naturally extensible
to adaptive, feature-sensitive simplification. Their hierar-
chical clustering algorithm is execution time and memory
efficient but in its feature-sensitive version produces point
sets of approximation error only slightly lower than that in-
troduced by uniform incremental clustering.

Alexa et al. [5] uniformly reduce point cloud redun-
dancy by estimating a point’s contribution to the moving
least squares (MLS) representation of the underlying sur-
face. Those points contributing the least are subsequently
removed. Similar to Linsen’s [2] algorithm, this method
does not guarantee the absence of insufficiently dense out-
put point sets. Alexa et al. [5] therefore suggest a resam-
pling method which computes planar Voronoi diagram rep-
resentations of undersampled MLS surface regions. The
density of the point set is increased by iteratively choosing
the vertex of the Voronoi diagram which is farthest away
from any of the other surface points in the diagram. This
process is repeated until the Euclidean distance between the
next sampling candidate and its nearest point is less than a
user-specified threshold.

1.2 Contribution of this paper

Using our Fast Marching farthest point sampling method
for implicit surfaces and point clouds (FastFPS) [1], we
present a new coarse-to-fine point cloud simplification al-
gorithm without the need for any prior surface reconstruc-
tion. The algorithm is execution time and memory ef-
ficient in both its uniform and adaptive, feature-sensitive
form. The user-controlled density of the output point set is
guaranteed thereby guaranteeing the availability of a point
set sufficiently dense for meaningful further processing. In
its uniform version, the method produces irregular cluster-
and hole-free point sets exhibiting excellent anti-aliasing
properties. The method allows for feature-sensitive simpli-
fication in the form of any combination of point weights
such as local surface variation, colour difference estimates,
etc. either computed on-the-fly or imported in the form
of pre-computed importance maps. The coarse-to-fine na-
ture of the algorithm inherently supports the generation of
progressive and multiresolution representations of the input

point cloud.
Our algorithm is closest in nature to Alexa et al. [5]

resampling method. In contrast to their work, our simplifi-
cation method is coarse-to-fine throughout and does not re-
quire any resampling to guarantee the user-requested point
set density. Furthermore, our algorithm supports both uni-
form and feature-sensitive point cloud simplification. The
Voronoi diagrams computed by our method represent true
(discrete) surface Voronoi diagrams rather than local, pla-
nar approximations. As a result, the point sets returned by
the algorithm’s uniform version are truly irregularly uni-
form in a deterministic sense and retain the excellent space-
filling and anti-aliasing properties typical of farthest point
sequences [11].

2 FastFPS point cloud simplification

In the following, we introduce our coarse-to-fine point
cloud simplification algorithm. We start by briefly sum-
marising the underlying FastFPS technique [1], followed
by the presentation of the simplification algorithm itself.

2.1 Fast Marching farthest point sampling
for implicit surfaces and point clouds

Farthest point sampling [10, 11] is intuitively based on the
idea of minimising any reconstruction error by repeatedly
placing the next sample point in the middle of the least-
known area of the sampling domain. Eldar et al. [11] show
that in the case of a farthest point sequence the location of
the next point to be sampled coincides with a vertex of the
bounded Voronoi diagram [12] of the previously selected
set of samples S, BVD(S ). Thus, incremental Voronoi
diagram construction provides farthest point samples pro-
gressively. To farthest point-sample a 3D point cloud, our
FastFPS algorithm therefore computes (discrete) Voronoi
diagrams in the form of weighted distance maps incremen-
tally directly across the input point set. This is achieved
efficiently and without the need for any prior surface recon-
struction by using Mémoli and Sapiro’s [13, 14] recent ex-
tension of the original Fast Marching level set method [15].

Mémoli and Sapiro’s [13, 14] extended Fast Marching
technique considers a closed hyper-surface M in R

m given
as the zero level-set of a distance function φ : R

m → R,
m ≥ 3. The r-offset, Ωr, of M is given by the union of the
balls centred at the surface points with radius r

Ωr :=
⋃

x∈M

B(x, r) = {x ∈ R
m : |φ(x)| ≤ r} (1)

For a smooth M and r sufficiently small, Ωr is a manifold
with smooth boundary [13]. To compute the weighted dis-
tance map originating from a source point q ∈ M and prop-
agating with speed F (p) on M , Mémoli and Sapiro [13]
suggest using the Euclidean distance map in Ωr to approx-
imate the intrinsic distance map on M . That is

|∇MTM (p)| = F (p) (2)



for p ∈ M and with boundary condition (propagation
source point) TM (q) = 0 is approximated by

|∇TΩr
(p)| = F̃ (p) (3)

for p ∈ Ωr and boundary condition TΩr
(q) = 0. F̃ (p)

represents the (smooth) extension of F (p) on M into Ωr.
The problem of computing an intrinsic distance map has
therefore been transformed into the problem of comput-
ing a extrinsic distance map in an Euclidean manifold with
boundary. Mémoli and Sapiro [13, 14] subsequently show
that the Fast Marching method can be used to approxi-
mate the solution to (3) in a computationally optimal man-
ner by only slightly modifying the original Fast Marching
technique [15] to deal with bounded spaces. Mémoli and
Sapiro [13] prove that their algorithm is of O(N log N)
complexity, N representing the number of grid points in
Ωr. For further details, see Mémoli and Sapiro [13].

2.2 A new point cloud simplification algo-
rithm

For simplicity, we first consider the formulation of our uni-
form point cloud simplification strategy.

The algorithm proceeds with the embedding of the
given point cloud P = {p1, p2, . . . , pN1} in a Cartesian
grid sufficiently large as to allow for the thin offset band
Ωr. For details on the determination of the optimal size of
r, see Moenning and Dodgson [1].

Given an initial subset of input points S ⊂ P in Ωr,
we then construct BVD(S ) by simultaneously propagating
fronts from each of the initial points outwards. During this
propagation, only grid points in Ωr are considered. This
process is equivalent to the computation of the Euclidean
distance map across P given S and Ωr. It is achieved by
solving (3) with F̃ (p) = 1 and using a single min-heap.

The vertices of BVD(S ) are given by those grid
points entered by three or more propagation waves (or two
for points on the domain boundary) and are therefore ob-
tained as a by-product of the propagation process. The
Voronoi vertices’ arrival times are inserted into a max-heap
data structure. The algorithm then proceeds by extracting
the root from the max-heap, the grid location of which rep-
resents the location of the next output point. The point is
inserted into BVD(S ) by resetting its arrival time to zero
and propagating a front away from it. The front will con-
tinue propagating until it hits grid points featuring lower
arrival times and thus belonging to neighbouring Voronoi
cells. The TΩr

values of updated grid points are updated
correspondingly in the min-heap using back pointers. New
and obsolete Voronoi vertices are inserted or removed from
the max-heap respectively. The algorithm continues ex-
tracting the root from the max-heap until the user-defined
density condition has been met or a given target model size
has been reached.

The density condition is formulated in terms of the
maximum distance, ρ, between points permitted by the

user. Thus, the simplified point set is refined until the next
farthest point candidate’s distance map value is no longer
larger than the user threshold. Figure 1 shows the effect of
different values of ρ on the density of the simplified point
set.

Figure 1. Effect of different user-controlled minimum den-
sity values, ρ, on density of the simplified 3D point set.
(a) ρ = 10 (b) ρ = 5 (c) ρ = 2.5.

Since points are selected in Ωr, the equivalent points
directly on P are found at any given time by projecting the
sample points in Ωr onto the surface. The algorithm can
thus be summarised as follows

0) Embed the given point cloud in a Cartesian grid suf-
ficiently large to allow for an offset band of size r.
Given an initial point cloud subset S ∈ Ωr, n = |S| ≥
2, compute BVD(S ) by propagating fronts with speed
F̃ (pi) from the points outwards using extended Fast
Marching. Store the Voronoi vertices’ arrival times in
a max-heap.

1) Extract the root from the max-heap to obtain sn+1.
S′ = S ∪ {sn+1}. Compute BVD(S ′) by propagat-
ing a front locally from sn+1 outwards using extended
Fast Marching and a single min-heap.

2) Correct the arrival times of updated grid points in
the min-heap. Insert the vertices of the bounded
Voronoi cell of sn+1, BV (sn+1 ), in the max-heap.
Remove obsolete Voronoi vertices of the neighbours
of BV (sn+1 ) from the max-heap.

3) If neither the user-controlled point density ρ nor the
target model size N2 < N1 has been reached, loop
from 1).

By allowing F̃ (pi) to vary with any (positive) weight
associated with points pi ∈ P , this algorithm supports
flexible feature-sensitive simplification. By weighting the
pi by, for example, local surface variation and/or colour
difference estimates, points are concentrated in regions of
change in curvature and/or colour. Any feature-sensitivity
estimates may be computed on-the-fly during front propa-
gation using local neighbourhoods which at any time are
readily available from the bounded Voronoi diagram. Al-
ternatively, point weights may be passed to the algorithm
in the form of an importance map. To allow for the user-
controlled density, the point cloud is simplified uniformly



until the density requirement is met. The remaining target
model budget is then distributed sensitively to local fea-
tures.

As regards the complexity of this algorithm, extract-
ing the root from and inserting into the max- or min-
heap and removing from the max-heap with subsequent
re-heapifying are O(log W ) operations, where W repre-
sents the number of elements in the heap. W is O(N),
N representing the number of grid points in the offset band
Ωr. The updating of the arrival times of existing min-heap
entries is O(1) due to the use of back pointers from the
grid to the heap. The detection of a (bounded) Voronoi
cell’s vertices and, if required, boundary is a by-product of
the O(N log N) front propagation. Thus, the algorithm’s
asymptotic efficiency is O(N log N).

3 Worked examples and discussion

We start by considering the uniform simplification of the
point clouds acquired from the surface of the genus-0
“Venus” model and a genus-1 CAD object respectively. For
simplicity, the radius of the union of balls making up the
thin offset band Ωr is set to a constant r = 2. Figures 2
and 3 present both the simplified point sets produced by
our algorithm for various levels of detail and the render-
ings of the corresponding reconstructed triangular meshes.
The irregular uniformity of the simplified point sets is ev-
ident in the cluster- and hole-free coverage of the two sur-
faces. This results in excellent anti-aliasing properties as
can be seen from the quality of the renderings for relatively
strongly simplified point sets. This anti-aliasing property
alongside the coarse-to-fine level-of-detail nature of the al-
gorithm yields immediate support for applications such as
progressive transmission of the 3D content across a lim-
ited bandwidth channel or the generation of multiresolution
representations.

Figure 2. Uniformly simplified Venus point sets and the
renderings of their mesh reconstructions.
(a) 97.5% simplified (ρ = 5.00).
(b) 95.0% simplified (ρ = 2.50).
(c) 90.0% simplified (ρ = 1.25).

Figure 3. Uniformly simplified point sets of a genus-1 ob-
ject and the renderings of their mesh reconstructions.
(a) 97.5% simplified (ρ = 6.00).
(b) 95.0% simplified (ρ = 3.00).
(c) 90.0% simplified (ρ = 1.50).

To demonstrate the use of our algorithm for feature-
sensitive simplification, we adaptively simplify a point set
sampled from the surface of the “Isis” model shown in fig-
ure 5(d). For simplicity, we consider the case of curvature-
sensitive simplification only. We locally estimate the sur-
face curvature on-the-fly across the input point cloud by,
firstly, querying the Voronoi diagram generated by our sim-
plification algorithm to obtain the set Npi

of k nearest
neighbours of the input point pi to be weighted. Secondly,
following the determination of the centroid of Npi

, the co-
variance matrix CNpi

of the points Npi
around their cen-

troid is computed. Eigenanalysis of the symmetric, posi-
tive semi-definite matrix CNpi

may then be used to obtain
a local curvature approximation. We follow Pauly et al. [9]
by considering the ratio of the eigenvalue corresponding
to the eigenvector in direction of the local surface normal
to the sum of all eigenvalues as weight wi of pi. That is,
F̃ (pi) = wi. Figure 4(a) illustrates the feature-sensitive
effect of these weights on the distribution of the result-
ing point set. Points are relatively more strongly concen-
trated in regions of change in curvature. As indicated in
figure 4(b), any excessive irregularity of the resulting point
sets undermining any meaningful further processing may
be avoided by strengthening the density condition ρ. Any
reduction in the value of ρ increases uniformity at the ex-
pense of adaptivity. Figure 5 shows the quality of the ren-
derings supported by the point sets produced by curvature-
sensitive, high-degree simplification.

Computational efficiency. In section 2.2, we
determined our algorithm’s worst case complexity of
O(N log N), N denoting the number of grid points in Ωr.
Figure 6 presents uniform simplification execution times
obtained experimentally. Figures 6(a) and 6(b) indicate that
in practice the algorithm benefits from its coarse-to-fine na-
ture in form of rather favourable execution time functions.
Its performance is only weakly affected by substantial in-
creases in either input model or target model size.

Point set distribution. For purposes of further pro-
cessing of a simplified point set such as surface reconstruc-
tion or texture synthesis, its distribution is frequently re-



Figure 4. Feature-sensitively distributed point sets gener-
ated by adaptive simplification using local curvature esti-
mation over rendering of corresponding mesh reconstruc-
tions. (a) ρ = 8.00 (b) ρ = 5.50.

quired to meet a uniform density requirement. As illus-
trated by figures 1 and 4, the algorithm presented here
meets this requirement by taking into account a user-
controlled density parameter ρ. The desired degree of uni-
formity is enforced irrespective of the degree of uniformity
of the input point set. Due to the surface Voronoi diagram
covering both over- and undersampled regions of the input
point cloud, undersampled regions can be upsampled auto-
matically by adjusting ρ as required.

Memory efficiency. The algorithm executes in-core
using a grid data structure holding the offset band Ωr and
both a min- and max-heap. The memory requirements of
the grid data structure depend on the size of the input point
cloud and the radius r of the balls centred at the input points
and used to determine the grid points to be included in Ωr.
The radius r may be allowed to vary adaptively alongside
the grid density. As an approximate upper limit, the mem-
ory requirement follows c ∗ (maxiai)3, where ai denotes
the length of the point cloud’s bounding box in the ith di-
rection with c representing a small constant varying pro-
portionally with the grid density.

The single min-heap is used to propagate multiple
fronts simultaneously. Since, as part of the Fast Marching
method, these fronts are only propagated in the direction of
increasing distance, their size is substantially smaller than
the size of the offset band at any time. The max-heap is

Figure 5. Renderings of meshes reconstructed from point
sets generated by adaptive simplification using local curva-
ture estimation.
(a) 97.5% simplified (ρ = 8.50).
(b) 95.0% simplified (ρ = 4.30).
(c) 90.0% simplified (ρ = 2.10).
(d) Original model (187644 points).

used to hold the farthest point candidates. Its memory re-
quirements therefore vary with the magnitude of the den-
sity parameter and the target model size respectively, which
will generally be a fraction of the input model size.

Approximation error. Qualitatively, as indicated by
figures 2, 3 and 5, even for relatively small target model
sizes, both the uniformly and feature-sensitively generated
point sets allow for visually appealing reconstructions. For
a more objective, quantitative evaluation of the extent of
the geometric error introduced by the simplification, we are
working on an automatic analysis tool which exploits the
availability of the dual of the surface Voronoi diagram, i.e.,
the Delaunay triangulation of the point sets, to compute the
distance between the surfaces represented by the input and
output point sets.

4 Conclusion

We presented a new point cloud simplification algorithm
with user-controlled density guarantee. The algorithm is
computationally and memory efficient, easy to implement
and requires no intermediate or prior surface reconstruc-
tion. Uniform point cloud simplification using our algo-
rithm allows for high-quality further processing without the
need for any prior resampling. Feature-sensitive simplifi-
cation may be driven by any combination of point weights
including colour differences and changes in curvature. The
coarse-to-fine nature of the algorithm naturally supports the
generation of progressive and multiresolution representa-
tions of the input point cloud.



Figure 6. Simplification times in seconds on a Pentium 3,
700 MHz, Windows machine with 512MB main memory.
(a) Execution time as function of input model size (95%
simplification of input point sets).
(b) Execution time as function of target model size.

We are currently working on an automatic tool for the
quantitative analysis of the approximation error introduced
by the algorithm. We are also interested in incorporating
a method for the detection of noisy measurements in the
input point set so that the need for the smoothing of point
clouds produced by typical 3D surface acquisition devices
becomes obsolete. We would further like to extend the al-
gorithm to support (partial) out-of-core processing. Finally,
we are investigating the generation of selectively-refined
multiresolution representations of input point sets using our
simplification algorithm.
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