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Abstract. The four-point curve subdivision scheme is one of the clas-
sic reference points of subdivision theory. It has effective C2 con-
tinuity, although the curvature at the data points actually diverges
slowly to infinity as very large numbers of subdivision steps are taken.
However, it has rather large longitudinal artifacts, so that points in-
terpolated around a curve of almost constant curvature are fitted by
a curve with significant variations of curvature. We describe here a
geometry-sensitive variant of this scheme which does not have this
problem. In fact circles are reproduced exactly with any spacing of
the initial data.

§1. The Four-Point Scheme

The four point scheme is a uniform stationary subdivision scheme with the
mask [−1, 0, 9, 16, 9, 0,−1]/16. It was first described by Dyn, Levin and
Gregory in [3], although the functional version had already been described
by Dubuc in [1]. There is a new vertex at each old vertex, and also a
new vertex associated with each edge of the control polygon, and these
new vertices are given by the stencil [−1, 9, 9,−1]/16. Thus, in Figure 1,
16P = 9[B + C] − [A + D], applying to each coordinate independently.

It is well-known [2] that this scheme has a limit curve which is al-
most C2 (“almost” is due to a Jordan block in the eigenanalysis at the
dyadic points, so that the second divided differences there increase at each
subdivision step by a fixed amount proportional to the original fourth dif-
ferences), but that the shape is somewhat prone to longitudinal artifacts
(the ripples which occur at one cycle per data point, visible primarily in
the curvature plots). The magnitude of this artifact (tabulated in Sect. 9)
is about three times as large as that of the cubic B-Spline, and this scheme
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Fig. 1. The four-point construction.

has a smaller artifact than the quadratic B-spline only when there are more
than eight points per full circle in the original polygon.

Figures 2 and 3 illustrate the artifact on a dataset with eight points
per cycle. The irregularity at the left hand side of the curve plots and at
the ends of the curvature plots are due to the fact that the data is closed,
but not cyclic, and no particularly sophisticated end-conditions have been
applied.

From the stencil we may determine that the second divided difference
at P is the mean of the second divided differences of the original polygon
at B and C:

8[B + C − 2P ] = 8[B + C] − 16P

= 8[B + C] − 9[B + C] + [A + D]

= [A + D] − [B + C]

= [A + C − 2B] + [B + D − 2C]

[B + C − 2P ]

1/4
=

[A + C − 2B] + [B + D − 2C]

2

This fact was known to Floater, who observed in [5] that taking the
harmonic mean instead of the arithmetic mean gave the scheme the prop-
erty of convexity preservation. Other convexity preserving variants have
been proposed by Le Mehauté and Utreras [8], and by Marinov, Dyn and
Levin [9]. A recent paper by Kuijt and van Damme [7] has a good list of
references to earlier papers.

§2. A Circle-Preserving Variant

Artifacts of the magnitude generated by the four-point scheme are unac-
ceptable when dealing with curves and surfaces where fairness matters,
and this motivated the search for a scheme which is essentially artifact-
free.

We observe that the four-point scheme is essentially function-based.
When used to fit functions which are polynomials of degree up to three it
is perfect, reproducing the original function exactly.

The fact that taking the mean of second differences gives good be-
haviour on functions led to the idea that if we want curvature to vary
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Fig. 2. (left) Cubic Bspline Curve (right) Curvature Plot.

Fig. 3. (left) Four-Point Curve (right) Curvature Plot.

smoothly we should make the curvature at each new vertex equal to the
mean of the curvatures at the adjacent old points.

The measure of curvature used is the Curvature Axis Vector defined as
the vector perpendicular to the plane of the circle through three points,
with a magnitude inversely proportional to the radius. It was necessary to
produce a vector measure, because a scheme capable of defining twisted
curves (non-planar curves in 3 dimensions) was required. The curvature
vectors at B and C are given by

VB =
[C − B] × [B − A]

|C − B||B − A||A − C|

VC =
[D − C] × [C − B]

|D − C||C − B||B − D|

and that at P by

VP =
[C − P ] × [P − B]

|C − P ||P − B||B − C| .

Note that this vector does not lie in the osculating plane, but perpen-
dicular to it. This means that it remains constant as a point moves round
a circle, rather than rotating to point always towards the centre.

Setting VP = [VB + VC ]/2 forces P to lie on a specific circular arc
which passes through B and C. In order to produce a specific point P we
need to identify which point of that arc to select. An obvious possibility,
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Fig. 4. Four-point applied to points on a quadratic function.

Fig. 5. Curvature plot thereof.

mentioned by Kuijt and van Damme [7], is to compute the intersection
with the perpendicular bisector plane of BC, but this would result in the
spacing of points remaining uneven as subdivision proceeded wherever a
long edge was adjacent to a short one.

To make such unevennesses blend out as subdivision proceeds, we
instead choose a new point closer to the end which has the shorter adjacent
edge. The particular algorithm used is to apply the condition that if
the lengths of the edges form a geometric sequence with ratio ρ before
subdivision, the same will be true after subdivision, with a ratio of

√
ρ.

It is clear that ρ will then converge towards unity. A computation which
achieves this is to choose P so that

|P − B|
|P − C| =

√

|C − A|
|D − B| .

The locus of points whose distances to two fixed points are in a given
ratio is a sphere, and so we have to find the point in which a given circular
arc meets a given sphere. There is always a solution, because one end of
the arc is inside the sphere and the other is outside.

In fact, because the ratio of these distances is known before the point
has to be computed, to improve the solution still further, the arc is set to
be that which has a curvature vector an appropriately weighted mean of
the end curvatures, rather than just the mid-value.

§3. End Conditions

This interpolant supports a full range of end conditions. We construct it
by setting the curvature vector at the end point, (A), in appropriate ways,
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in place of the 3-point formula which is no longer available at the ends,
and by setting the ratio for division of AB to

√

|AB| : |BC|, because we
can only estimate the geometric progression ratio from one side. Let the
end point be A and the curvature vector there be VA.

End-condition computation of VA

fixed direction, TA: VA := [B − A] × TA/([B − A].[B − A]|TA

dummy point, Z: VA := [B − A] × [A − Z]/(|AB| |ZA| |ZB|)
“natural” end condition: VA := 0
constant curvature: VA := VB

“not-a-knot”: UA := (|AB|+|BC|)VB−(|AB|)VC

|BC|

VA := UA − UA.[B−A]
|AB|2 [B − A]

Note that, in the “not-a-knot” condition, VA has to be adjusted so
that it is perpendicular to AB. It may also need to be reduced if its
magnitude is greater than |AB|, as might happen if |BC| > |AB| or
VB.VC < 0.

§4. Behaviour in the Limit

Consider the case after many iterations, when consecutive vertices are lo-
cally almost equispaced along a straight line. Place the coordinate system
at the midpoint of BC, with its x-axis pointing along BC, and its xz plane
containing D. We may express the coordinates of the four points as

A = (−3 + xA, yA, zA)

B = (−1 + xB , 0, 0)

C = (1 + xC , 0, 0) = (1 − xB , 0, 0)

D = (3 + xD, 0, zD)

where the values xA, xB etc. are all small relative to the distances between
the vertices. Then to a first approximation in xA, xB etc.,

|AC| = 4 + xC − xA

= 4 − xB − xA

= 4(1 − (xB + xA)/4)

|BD| = 4 − xB + xD

= 4(1 − (xB − xD)/4)

|AC|/|BD| = (1 − (xB + xA)/4)/(1 − (xB − xD)/4)

= 1 − (xB + xA)/4 + (xB − xD)/4

= 1 − (xA + xD)/4
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√

|AC|/|BD| = 1 − (xA + xD)/8

= (xP − (−1 + xB))/((1 − xB) − xP )

= ((1 − xB) + xP )/((1 − xB) − xP )

= (1 − xB)(1 + 2xP /(1 − xB))

2xP /(1 − xB) = −(xA + xD)/8(1 − xB)

xP = −(xA + xD)/16,

which is exactly the perturbation from (B+C)/2 predicted by the standard
four point scheme.

Note that the magnitude of xP is a factor of 8 less than the original xA

etc. while the spacing is only halving. The x’s are therefore converging
to zero cubically, so that the ignored terms (quadratic in the x’s) are
converging sextically.

We may therefore concern ourselves in the next stage of the proofs
solely with P being a nominal midpoint, not bothering with the fact that
in fact we bias the curvature calculation by taking a weighted mean. We
also ignore the x’s from this point in order to shorten the algebra.

VB = [2,−yA,−zA] × [2, 0, 0]/(2 ∗ 4 ∗ 2)

= [0,−zA, yA]/8

VC = [2, 0, 0] × [2, 0, zD]/(2 ∗ 4 ∗ 2)

= [0,−zD, 0]/8

VP = (VB + VC)/2

= [0, zA + zD, yA]/8

= [1, yP , zP ] × [1,−yP ,−zP ]/(1 ∗ 2 ∗ 1)

= [0, 2zP ,−2yP ]/2

zP = −(zA + zD)/8

yP = −yA/8.

Again, the deviations from the 4-point scheme must be converging as
the sixth power of the shrinkage rate.

We thus see that both along BC and perpendicular to it, for small
deviations from the straight, those deviations behave almost exactly as
the 4-point scheme would require, and the quadratic terms which we have
ignored above are converging much better than quartically.

Quartic convergence is sufficient to argue that the continuity be-
haviour of the scheme in the limit will be the same as the original four
point scheme. The method of proof is shown by Dyn and Levin in [4].
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§5. Implementation

This scheme can be implemented straightforwardly as a sequence of passes
through the data. Let the given control points be numbered from 0 to n
in sequence, and the spans numbered from 1 to n.

∀j ∈ 1 . . . n : dj := |Pj − Pj−1|
∀j ∈ 1 . . . n − 1 : {ej := |Pj+1 − Pj−1|

Vj := [Pj+1 − Pj ] × [Pj − Pj−1]/(dj ∗ dj+1 ∗ ej)}
V0 := appropriate end conditions.

Vn := (see section 3 above.)

∀j ∈ 2 . . . n − 1 : {dlj :=
√

ej−1

drj :=
√

ej}
dl1 :=

√

d1

dr1 :=
√

d2

dln :=
√

dn−1

drn :=
√

dn

∀j ∈ 1 . . . n :
{

V newj := [drj ∗ Vj−1 + dlj ∗ Vj ]/(drj + dlj)

Rj := [Pj − Pj−1] × V newj

cj :=
√

(1 − Rj .Rj)

Qj := [Pj + Pj−1 + |Pj − Pj−1|Rj ]/2cj

hj := cj(1 − cj)/Rj .Rj

Pnewj :=
Pj−1dr2

j + 2hjQjdrjdlj + Pjdl2j
dr2

j + 2hjdrjdlj + dl2j

}

.

The only aspect which is not trivial is the computation of the new
point as the intersection of a sphere and a circular arc. It turns out that the
parameter value of the standard rational Bézier quadratic representation
of the arc is directly related to the ratio of the distances of the point from
the end-points:

t =
dl

dl + dr
,

and so all that is necessary is to determine the mid-control point and its
homogeneous weight and thence evaluate the required point in the usual
way. The relationship for t is not obvious and is proved in Sect. 8.

§6. Example

The equivalent of Figures 2 and 3 is, by design, utterly featureless. The
limit curve is exactly a circle, and the curvature plot a straight line. We

nad10
Text Box
Erratum:Q_j := (P_{j-1} + P_j) / 2+ |P_j - P_{j-1}| * R_j / (2 * c_j)Possible Erratum:h_j := c_j This has not been verified as an error but is a plausible alternative.
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Fig. 6. (left) original control polygon (right) interpolated curve.

Fig. 7. corresponding curvature plot.

therefore show here instead a more typical example, where the curvature
varies. The control points are spaced along a “rectangular spiral” with
additional points added close to the end points to control the slopes near
the ends. This illustrates the facts that

(i) under circumstances of smoothly varying curvature the new method
gives a smooth curvature plot.

(ii) the method is tolerant of unevenly spaced data.

This figure makes it look as if the new scheme is C2, but as far as we
can determine it is not. According to [3], the continuity level is the same
as that of the stationary scheme to which this scheme converges. That
scheme is the four-point scheme and so we claim C2−ε, like that scheme.

There may be a more sophisticated analysis based on the fact that the
eigenvectors involved in the Jordan block become equal only in the limit,
but it is unlikely that this will improve the continuity level. Our experience
with the ternary 4-point scheme [6] throws light on this. That scheme has
close eigenvalues and the curvature behaviour, while technically C2, is,
in practice, actually no better than the standard 4-point scheme, having
gross curvature spikes near the original control points.

Indeed, in the standard 4-point scheme the infinities of curvature are
triggered by the fourth difference in the polygon. We therefore expect
them to be triggered in this variant by the second differences of curva-
ture. Figure 6 was deliberately designed to have definite but small first
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Fig. 8. curvature plot with 2nd difference of curvature vectors.

differences of curvature and close-to-zero second differences.
If we try points equally spaced in x on the parabola y = x2, which is

within the precision set of the standard scheme (see Figures 4 and 5) the
curvature varies, and near the centre there are significant second differ-
ences of curvature. The new scheme gives the curvature plot of Figure 8,
which shows irregularities similar to those of Figure 3.

§7. Conclusions

A geometry sensitive subdivision scheme has been described which gives
very low longitudinal artifacts in situations where the curvature is vary-
ing smoothly. Important ideas exploited here which are relevant to the
development of other subdivision schemes (both curves and surfaces) are:

• the use of averaging of second differences to give the coefficients,

• the use of curvature measures in place of second differences,

• separation of the positioning of new points within the abscissa space
from positioning perpendicular to the image of that space.

§8. Proof of Ratio Property

If V = 0, the arc between Pj−1 and Pj is a straight line, and the point at
the required ratio can be constructed directly.

If V 6= 0 it defines a plane in which the arc lies. Figure 9 shows the
configuration in this plane. A and B are local names for Pj−1 and Pj .
M is the midpoint of the other arc of the circle, Q is the middle Bézier
control point of the rational quadratic representation of the circle. T is
the point on AB satisfying |AT |/|TB| = t/(1− t) being the required ratio
of distances.

Claim: |AP |/|PB| = |AT |/|TB|.

Proof:

In the circle APBM , |AM | = |MB|
and hence angle APM(= APT ) = MPB(= TPB)

and so sin(APT ) = sin(TPB).
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Fig. 9. Computation of P .

Because ATP + TPB = π,

we also have sin(ATP ) = sin(TPB).

In triangle APT , |AT |/ sin(APT ) = |AP |/ sin(ATP ).

In triangle PTB, |TB|/ sin(TPB) = |PB|/ sin(PTB).

Hence |AT |/|AP | = sin(APT )/ sin(ATP )

= sin(TPB)/ sin(TPB) = |TB|/|PB|
and so |AT |/|TB| = |AP |/|PB|.

§9. Longitudinal Artifact Measurement

We measure the amplitude of the longitudinal artifacts by placing points
equally around a circle (with spatial frequency ω measured in terms of
its reciprocal, points per cycle), refining just once, and then measuring
the Fourier components, at frequencies of ω + 1/2 and ω − 1/2, of the
new polygon. This measurement is carried out over a cyclic structure,
so that end-conditions do not affect it. This gives four components: in-
and out of-phase, and upper and lower sidebands. The two sidebands are
combined, and the phase with larger effect is taken. In fact the in-phase
component gives the visible artifact: the out of phase component gives the
uneven spacing along the curve.

We also take the fundamental Fourier component as a measure of
approximation order.

The reason why only one stage of refinement is made is that the bulk
of the damage is done at the first step. Later stages introduce components
at still higher frequencies, which alter the shape of the curve between the
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original data points, but do not significantly alter the magnitude of the
artifact effect.

Quadratic B-spline

frequency artifact fundamental
8 0.056042 0.788580
16 0.007425 0.943456
32 0.000941 0.985623
64 0.000118 0.996390

Approximation error = 14.784 ∗ n−2

Artifact magnitude = 30.969 ∗ n−3

Cubic B-spline

frequency artifact fundamental
8 0.021446 0.728553
16 0.001448 0.925328
32 0.000092 0.980877
64 0.000005 0.995190

Approximation error = 19.7 ∗ n−2

Artifact magnitude = 97.253 ∗ n−4

Four-point

frequency artifact fundamental
8 0.058058 0.941941
16 0.004235 0.995764
32 0.000275 0.999724
64 0.000017 0.999982

Approximation error = 291.29 ∗ n−4

Artifact magnitude = 291.29 ∗ n−4
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