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Abstract 
 

We present a data structure for three-dimensional 
fields C1 continuous in the modelling space. Regular grids 
storing the field values discretely are combined with a 
triquadratic approximation filter to define volume objects. 
This association of a grid and an 
approximation/interpolation filter allows the field to be 
defined by a C1 continuous real function and the surface to 
be directly visualised from its own equation. We show how 
accurate and high quality interactive visualisation is 
obtained during the modelling process, and we explain 
why the visualisation is faithful to the object definition. We 
also describe, as an example of application of our data 
structure, how advanced Boolean operators realised with 
soft or “functionally controlled” transitions are performed 
under the influence of an interactive modelling tool. 
 
1. Introduction 
 

Many algorithms for the visualisation of discrete three-
dimensional volume data now exist and most of them 
allow interactive visualisation of isopotential surfaces 
[1,2] or of potential variations in the volume (using 
transparency or colour variation on the surface) [3,4]. 
Some new hardware also integrates three-dimensional 
texture rendering and pixel or vertex shaders, which are 
efficient tools to increase interactivity in volume 
visualisations [5]. A significant advantage of this 
representation is that it offers an alternative to the classical 
polygon rendering while avoiding some topological 
problems resulting from shape polygonalisation [6]. 

While fast visualisation is available, techniques to 
model such data interactively need to be improved and 
new models proposed. Three-dimensional data are usually 
stored in regular grids. On each voxel of the grid, the data 
can be a scalar, the three components of the colour (four if 
the alpha channel is used), or any other multidimensional 
vector data. As shown by V.V. Savchenko et al. [7], this 
data structure is a template to unify objects defined by 
potential fields (discrete or not). Thus a wide variety of 

different input models, like output scanner 3D volumes, 
reconstructed field from scattered data [8,9,10], 
reconstructed distance field from isosurface [11] or 
modelled implicit objects [12] can be integrated and 
manipulated with a common representation. These volume 
objects can usually be defined by continuous real functions 
as f(x,y,z)≤0  [7]. Conversion methods to convert one 
representation to another and details on voxel based object 
representation/manipulation are widely discussed in 
[13,14]. Different operations can then be applied on these 
objects from classical linear transformations and Boolean 
composition to more advanced algebraic operations [14], 
space mapping [15], sweeping by a moving solid [16] and 
Boolean compositions with soft [17,18] or “functionally 
defined” transitions [19].  

Different families of volume modeller exist. Some, like 
the BlobTree, are essentially based on function 
representation and their composition in a CSG tree [18]. 
To obtain interactivity, only bounded skeleton primitives 
are used [20,21,22] and the surface is polygonalised for 
rendering. Others are based on discrete structures like 
regular grids [23]. There are also hybrid systems which 
integrate as primitives most of the volume representations 
[13]. The primitives are manipulated using their own 
representation. Different techniques are then available to 
interactively render the surface: polygonalisation, points, 
ray-casting using tri-linear interpolation, etc. The 
interactively visualised surface is always an approximation 
of the modelled object and depending on this 
approximation precision and on the sharpness of the shape, 
the error can grow, consequently reducing fidelity. ADFs 
[24] are adaptive octrees, which generally become deeper 
in proximity to the surface. They allow a faithful 
interactive rendering of the surface [25] but the value of 
the potential at a random point of the working space has to 
be computed as a distance from the surface, making 
combination with soft transition unsuitable for precise 
interactive modelling. 

Our aim is to propose a unified structure to precisely 
and interactively model and visualise volume objects. The 
modeller must be able to import objects from different 
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sources and to convert them into its internal 
representation. Then all operations on objects will be 
applied on this new representation. Objects must then be 
able to be saved and exported in different formats. The 
wish for precision and interactivity (during both modelling 
and visualisation processes) leads us to the following 
requirements: 
•  Objects are represented as volumes. 
•  Visualisation is interactive and offers a high shape 

representation quality. 
•  Visualisation is an accurate representation of the 

object. 
•  The modelling process is accurate and interactive. 
•  Transformations can be applied to objects. 
•  Model and interface are adapted to the use of Boolean 

composition operators with “functionally defined” and 
point-by-point controlled transitions.  
The goal of this paper is not to propose a complete 

solution, but as a first step, to present and to justify a 
kernel on which such a modeller can be based. In the 
following section, we present and justify our choice of 
data structure. Regular grids discretely storing the field 
values combined with a triquadratic approximation filter 
are used to defined volume objects. This association of a 
grid and an approximation/interpolation filter allows the 
field to be defined by a C1 continuous real function and the 
surface to be directly visualised from its own equation. In 
the third section, the triquadratic filter is described. We 
present the visualisation method and explain how 
interactive and high precision visualisation is obtained. 
This allows us to show that the visualisation is faithful to 
the object definition. Modelling tools and processes are 
presented in the fourth section. We discuss the use of 
Boolean composition with “functionally defined” 
transition and we describe, as an example of use of our 
data structure, an interactive interface to allow the user to 
precisely control the modelled shape. To illustrate the 
work presented in this paper, we conclude with some 
examples.  
 
2. Volume data structure 
 

There is currently a great deal of research interest in 
finding methods to define, model or fit volume/surface 
data using real continuous potential functions f: R3→R. 
Among the reasons that motivate this interest, we draw 
attention to the wide variety of geometric operations that 
are available, the straightforward evaluation of the position 
of a point in regards to the surface and the possibility to 
choose and adapt the visualisation accuracy from the 
surface equation.  

A volume described by a potential function f: R3→R is 
defined as follows: The set of points p(x,y,z) for which 
f(x,y,z)=0 defines the surface and the set of points p for 

which f(x,y,z)<01 defines the inside of the volume. This 
representation is implicit and the generated zero isosurface 
is commonly called an implicit surface. Primitives fi thus 
defined are transformed or combined by composing them 
with operators φ: Rn→R, where n is the number of 
primitives [17]. The result of an operation F=φ(f1,..,fn) is a 
new primitive also defined as a volume. Operations on 
primitives are organised in hierarchical structures like 
CSG trees. Leaves are the primitives and nodes are 
operators. At each node, the new equation is a composition 
of the combined or transformed primitives. This implied 
that the equation complexity grows with the size of the 
tree. With even a small number of levels, the function 
evaluation become expensive in computing time and 
rendering the shape in interactive time become more 
difficult. Moreover, while a fast evaluation of combined 
functions fi at the surface level is sufficient to interactively 
compose primitives with classical Boolean composition 
operators [26], Boolean operators with soft transition 
require, in addition, fast evaluation in the transition area 
[21,27,18] and Boolean composition with “functionally 
defined” transition requires fast evaluation in the whole 
modelling space because the stretch of the transition is not 
predictable before it has been created.  

A formal visualisation of the potential function is not 
possible in most cases, the potential function must be 
sampled and, therefore, the reconstructed isosurface will 
always be an approximation to the initial function. To 
allow the computation time to depend only on the equation 
complexity of the applied operation or of the imported 
primitive, we store the potential in a regular voxel grid at 
each level of the tree (leaves and nodes). The grid 
furnishes the sampled representation of the potential field. 
Thus, this method takes advantage of the fact that direct 
rendering of a voxel grid is possible [28], and the loss of 
time generated by the construction of an intermediate 
structure (usually a triangular mesh) to visualise the 
surface is avoided. ADFs or adaptive irregular grids are 
not used because we need to construct the grid as fast as 
possible without the problem of discontinuities while 
interpolating the values in the grid to evaluate the field at a 
point p of R3. 

However visualisation requires the inverse process that 
reconstructs a signal everywhere in the volume. This 
operation can be performed using the well-known 
convolution operator:    

( )( ) ( ) ( )∫
+∞

∞−

−×=∗ τττ dtgftgf   , 

where f is the sampled function and g the filter. It is 
obvious that the quality of the reconstructed signal is  
dependent on the complexity of the filter. Thus the choice 
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this paper, we use f(x,y,z)<0 but the inverse convention where the inside 
of the volume is defined by f(x,y,z)>0 could also be chosen. 



  
  
  

   

of an efficient filter is essential for this application. 
Several kinds of 3D filters for volume visualisation have 
been studied in many ways in the past [29,30,31]. The 
most studied are: the linear filter, cubic filter based on BC-
splines, gaussian filters and windowed sinc filters. Even 
though the linear filter is widely used in the volume 
rendering applications, studies have shown that it gives 
poor quality results. Better results can be obtained with 
cubic filters or windowed sinc filters. Indeed, the original 
function is better approximated and they allow smooth 
transitions due to a high degree of continuity. However, a 
tricubic filter requires 64 volume samples to reconstruct 
the function within a voxel, and windowed sinc filters 
need even more samples. Thus their complexity prohibits 
any use within interactive software. Therefore the main 
problem of our approach is to find a filter allowing both 
interactive renderings and smooth reconstructions of the 
isosurfaces.   

A useful solution can come from a triquadratic filter 
that allows interactive renderings [32] with a high quality 
recontruction. It has been shown that quadratics are 
significantly faster to compute than cubics whilst 
providing comparable quality in the resulting interpolation 
[33]. In adding this filter to the grid to define objects, the 
original implicit representation is reduced to a smooth C1 
continuous representation. We thus combine the 
advantages of a sampled representation to store the 
potential values and a real continuous C1 representation to 
define and evaluate in a constant time the value of the 
potential and its first derivative everywhere in the 
modelling space, whatever the shape complexity. Thus, 
both the grid and the triquadratic approximation define our 
objects. Objects are no longer defined by their original 
data structure. This ensures that if the filter is used to 
accurately visualise the grid and if the rendering viewport 
is adapted to the grid’s size, no unwanted noise or detail 
will appear if a more accurate visualisation technique is 
used. It is obvious that the thinness of the details in the 
modelled shape directly depends on the grid size, and the 
maximum size of the grid depends on the machine 
computation performance and the range of time considered 
as interactive.   
 
3. Triquadratic reconstruction 
 

This section describes our visualisation method, which 
is based on ray casting. The quadratic filter and its 
reconstruction properties are first described. Then we 
show how high quality visualisation and interactive 
rendering are provided with the use of the triquadratic 
approximation filter to smoothly reconstruct the potential 
values of a regular grid. We conclude this section with 
some optimisations that allow us to decrease computation 
time and reach the interactivity.     
 
 

 
3.1. One-dimensional quadratic filter 
 
 
 
 
 
 
 
 
 

Figure 3.1: 1D filter 
 

Before introducing the triquadratic filter, we describe 
the filter in a one-dimensional case. Three neighbouring 
samples (Pi-1, Pi, Pi+1) are needed (fig. 1) in order to 
reconstruct the one-dimensional signal within the interval 
[i-0.5, i+0.5]. Now the reconstruction is made in two steps. 
First, two points Pi- and Pi+, which are respectively the 
middles of the two segments  [Pi-1, Pi] and [Pi, Pi+1], are 
defined: 

2
1 ii

i
PPP += −

−
           

2
1+

+
+= ii

i
PPP . 

Then a quadratic Bézier curve is defined from the three 
control points (Pi-1, Pi, Pi+1). Thus the reconstruction 
equation, with t=0 at i-0.5 and t=1 at i+0.5, can be written 
as : 
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or in a matrix representation : 
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The C0 and C1 continuities are obvious. While the filter 
function is internally C2 continuous, the continuity across 
the knots, between segments, is only guaranteed to be C1 
by construction. 
Another interesting property is that the reconstructed 
signal does not pass through the sampled points. Local 
maxima are never reached and the high frequencies of the 
signal are smoothed.  
The final property of note is the first derivative. It is 
analytically given by : 
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The derivative function is in fact a linear interpolation of 
two middle difference gradients. In a usual volume 
visualisation, the gradient is estimated with a (tri)linear 
interpolation of central differences gradients computed at 
the sampled points using the formula : 

( ) ( )iGGGPPiG MDIFiiiiCDIF =+=−= +−−+

22
11 . 

The equation above shows that the gradient estimated 
with the usual central difference gradient is less accurate 
than the gradient estimation provided by the quadratic 
filter. Indeed the central difference at the sampled points is 
the mean value of two middle difference gradients Gi- and 
Gi+. Thus the interpolation of the mean values (Mi=1/2.Gi-
+ 1/2 .Gi+) used in the central difference estimation leads 
to a loss of information in the gradient reconstruction, by 
regard to the use of the direct interpolation of middle 
differences Gi. However the quadratic filter is more 
sensitive to the data noise that is fortunately usually not 
present in the case of three-dimensional signals generated 
from equations.   
 
3.2. Extension to volumes 
 

The extension to three-dimensional volumes is 
straightforward and the previous results are also true while 
extended to this case. 27 volume samples (3×3×3) are now 
required to reconstruct the C1 continuous signal within a 
parallelepiped aligned on the central sample (fig. 3.2). 
Like the usual trilinear interpolation, applying the previous 
filter on the three axes performs the reconstruction. First 9 
passes on the x axis are done providing 9 intermediate 
samples that undergo 3 passes on the y axis. It leads to 3 
intermediate results that finally are used in one pass on the 
z axis. 
 
 
 
 
 
 
 
 

 
Figure 3.2: three-dimensional reconstruction 

 
The final reconstructed potential function h of the 

signal within the parallelepiped at a location (x, y, z) can 
be written as:  

( ) ∑
=

=
2

0,,
222..000 .,,

kji

kji
ijkPP zyxSzyxh .             (1) 

Here the 27 Sijk coefficients are computed from the 27 grid 
potentials (Pijk) by using a 27×27-transformation matrix 
representative of the triquadratic filter. Fortunately, a lot of 

matrix coefficients are null, reducing the computations of 
the Sijk coefficients.  
 
3.3. Fast Visualisation 
 

By now the visualisation of the implicit surface 
crossing this parallelepiped of reconstruction can be 
reduced to the visualisation of a C1 continuous surface 
defined by the equation h(x,y,z)=0, with x, y and z in 
[0..1]. However it is not obvious how to find the projection 
of this surface on the image plane in an interactive time. 
The proposed solution allows fast rendering while 
preserving a high quality of visualisation. It is based on the 
fact that every ray going through this parallelepiped can be 
written in a parametric form: 

( ) ( ) ( )010010010 .,.,. zztzzyytyyxxtxx −+=−+=−+=  (2) 2 

By substituting the coordinates in the previous equation, 
the reconstruction along the ray can be written as a sixth 
degree polynomial: 

( ) ∑
=

≤≤=
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0
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i

i
i ttCth .                 (3) 

This polynomial should be solved in order to find the 
intersection with the isosurface. However there is no 
algorithm that allows the accurate computation of such a 
solution in a very short time. The Sturm theorem could be 
used in order to efficiently approximate the roots, but its 
implementation is currently too expensive to be used in an 
interactive visualisation tool. Thus a less elegant but more 
efficient solution consisting in sampling many values 
(fixed to 16 here) along the ray has been used. Once an 
intersection has been detected (i.e. h(ti-1) < 0 < h(ti) ), the 
final value of t is linearly interpolated from the last two 
samples. This allows us to obtain an accurate 
approximation of the intersection between the ray and the 
isosurface. Finally the shading process requires the surface 
normal that can be computed from the intersection point 
using the following equation: 
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The accurately raytraced surface is the zero isosurface 
reconstructed from the grid by the triquadratic filter. This 
solves one of our requirements: The visualised shape is a 
faithful representation of the modelled one. 
 

                                                 
2 Where (x0,y0,z0) are the coordinates of the first point of intersection 
between a ray and a voxel, (x1,y1,z1) are the coordinates of the second and  
t ∈  [0,1]. 
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3.4. Optimisations 
 

Because many computations are required by the 
quadratic reconstruction, the visualisation process must be 
deeply optimised. Our optimised algorithm allows 
interactive rendering times (less than 1 second) for the 
visualisation of 2563 voxels in a 5122 viewport using an 
AMD Athlon processor at 1.0 GHz. Furthermore this 
algorithm allows interactive settings of the isosurface 
threshold. A complete description is given in [32], so we 
will just describe here the main optimisations.  

The fast computation of coefficients Ci of the 
polynomial equation (Equation 3) represents the main 
requirement to perform the interactive rendering. They 
depend on both the Sijk coefficients (Equation 1) and the 
ray parameters (Equation 2). A naïve raycasting algorithm 
would compute the Sijk values for every voxel crossed by 
the ray. A more suitable approach is to use a sorted 
representation of the object where voxels are projected in a 
front-to-back order. Then the Sijk values are computed only 
once for all the rays going through the voxel. Their 
computation requires 316 additions and 80 multiplications 
per voxel. The evaluation of the Ci coefficients from the 
ray parameters and the Sijk values requires an addition of 
724 multiplications and 108 additions per ray. But most of 
these multiplications depend only on the ray position, and 
by using a large set of precomputed rays (instead of the 
real rays), the number of multiplications is reduced to 108 
per ray.   

A Min-Max octree is also used in order to compute 
only the voxels of interest. The octree is run in a front-to-
back order and the nodes that do not enclose the min-max 
values are skipped. The leaf nodes contain the min and 
max values of the 27 samples needed for the 
reconstruction. These samples also represent an absolute 
boundary of the reconstructed signal within the voxel.  
Trees are often used in computer graphics. They specially 
increase raytracers performances while allowing to find 
the intersection between the ray and the sampled surface in 
O(Log(n)) steps [34]. Our implementation of an octree 
provides the same improvement. Rendering time is not 
anymore principally dependent on the volume size, but on 
the image size. The use of the Min-Max octree as an 
additional structure may seems to be a contradiction within 
our approach, but its construction time costs less than one 
second for a grid of 1283 voxels and it allows our 
rendering technique to be interactive. 
 
4. Potential function manipulation 
 

The data structure and its visualisation method are now 
well defined. We point out that interactivity during the 
modelling process depends on the size of the grid and the 
computation complexity of the operators whereas 
interactive visualisation essentially depends on the size of 
the rendering window, whatever the grid.  

The computer used to test the modeller has an AMD K7 at 
1.0 Ghz processor and 256 Mbytes of DDR memory. The 
standard grid is composed of 1283 float values of storage 
eight Mbytes each and the visualisation is done in a 5122 
viewport (larger viewports are available for less interactive 
but finer rendering). Times given in this section refer to 
this configuration.  

In order to model complex objects, primitives have to 
be combined or transformed. In this section we show how 
operators are applied and we discuss the limitations caused 
by the bounded representation of the potential field in a 
grid. We also recall how “functionally defined” precise 
blending is performed and controlled in order to introduce 
requirements for a suitable interface. This allows us to 
show how our data structure can be use in an interactive 
interface to precisely model volume objects. The 
application is an example given to illustrate our model 
capabilities.  
 
4.1. Operators 
 

Operators φcomp defined3 as a function of primitives fi 
are directly applied on the grids representing the 
primitives. The potential field resulting from the operation 
is stored in a new grid and the modelled object is defined 
by its approximation by the triquadratic filter. This 
approach allows us to modify or compose objects in a time 
independent of the shape complexity.  

But grids are large data structures: Their storage 
requires a lot of memory. To define fine objects in a large 
enough modelling space, we use grids that are 1283 float 
values (smaller or larger grids can be used depending on 
the processor speed). It is inconceivable to store all the 
grids representing each node or leaf of the tree: Even if a 
lot of memory is available, objects defined by many 
operations are liable to overflow the maximum available 
storage space. For this reason, it is unsuitable to modify 
the object by acting on primitives from which it is defined. 
These primitives being nodes or leaves situated at lower 
level of the tree. Actually, if a node or a leaf of the current 
object is modified, all the computation will have to be 
done from the leaves to the current node. This complete 
evaluation of the tree can be a very long process.  

For this reason, it is preferable to directly apply 
operators on the current object to be able to modify it in an 
interactive time (if operators allowing the desired 
modification are available). This is important to take into 
account when modelling. Indeed, to limit backtracks in the 
tree and long computations, the user has to carefully and 
accurately model his object operation by operation. 

Space mapping operator φmap transforms the space in 
which the potential field is defined. While deformations 
like tapering, twisting or bending can be applied on 

                                                 
3 Offsetting, Boolean composition with or without soft transitions and 
metamorphoses are elements of this operator set. 



  
  
  

   

volume objects when their equation is known [35,18], it 
becomes delicate when the volume is defined in a bounded 
space without the knowledge of the potential values 
outside the boundaries and when the operator applies itself 
on the whole modelling space. Even for basic operators 
like translation or rotation, how can we compute all the 
values of the grid representing a volume after its 
translation where at least metric and maybe curvature of 
the potential field have to be conserved?   

We do not give a solution to this problem, which is 
illustrated in two dimensions in figure 4.1. Specific 
research will have to be done to correctly surround this 
question and to propose suitable solutions. An introduction 
to this problem can be found in [36] which catalogues a 
variety of possible solutions. Thus, only bounded space 
mapping operators [37] having their bounded box included 
in the modelling space are able to be directly used on our 
volume objects. A solution to avoid this problem is to use 
only bounded primitives [16,38,18,23] sampled in an 
infinite grid [23]. The values outside the boundaries are a 
known constant scalar and unknown areas are avoided. 
Moreover, even if the grid is infinite, the visualisation 
could remain interactive (rendering speed depends mostly 
on the viewport size). Volumes defined by bounded 
potential fields can be used as input objects, but 
mechanisms to restrict all primitives to this representation 
are out of the scope of this paper.   
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: It is an open question how to compute the 
potential field values in the unknown area while conserving 
regular variation of the potential field. 
 

Because each primitive is stored in its own grid, the 
use of n-ary operators leads us to store at least the n grids, 
which can costs too much memory. To minimise the 
number of stored grids, we only use unary and binary 
operators. As shown in [17], this does not consequently 
restrict the variety of available operations. Moreover, 
because it is defined as the sum of potential functions 
having specific field variations, even the classical n-ary 
blending operator used for “blobs” can be decomposed and 
applied as a succession of binary blending operators [23]. 

Boolean composition operators with soft transition are 
considered as powerful and useful [20,39,7,18] for implicit 
modelling, therefore, one of our main preoccupations is to 
propose an accurate and interactive tool to realise them. As 
shown in [19], point-by-point control of the blend is 

possible and the classical smooth and regular curved or 
inflated transition can be extended to a “functionally 
controlled” transition. 
The transition is said to be “functionally controlled” when 
its form is defined by functions h: R→R. Moreover, the 
functions used to perform the transition preserve the 
metric of the combined primitives outside the part of the 
fields affected by the blend [19] and keep regular 
variations inside, which make this approach very relevant 
for composition of volume objects [40]. The used 
expressions for Boolean compositions are the following: 

( ) ( ) ( )21212121 ,min,: ffhffffOO i
bool −−=∪ φ   i=1,2  , 

( ) ( ) ( )21212121 ,max,: ffhffffOO i
bool −+=∩ φ   i=1,2  , 

( ) ( ) ( )21212121 ,max,:/ ffhffffOO i
bool ++−=φ   i=1,2  . 

    Where φbool are binary Boolean composition operators, 
potential functions f1 and f2 represent the combined 
primitives and functions hi: R→R (i=1,2) are 1D cubic 
polynomial splines controlled point-by-point [41] that 
define the form of the transition. Where |f1-f2|=0 (f1=f2), 
the min/max function generates a differential discontinuity 
(the tangent at this point is controlled to ensure C1 
continuity): f1 is selected on one side of the frontier (the 
set of points where |f1-f2|=0) and f2 is selected in the other. 
For each side a function h has to be defined. Function h1 
defines the transition in the side where f1 is selected and 
function h2 where f2 is selected, as illustrated figure 4.2. 
More details are given in [19]. 

 

       
 

Figure 4.2: Union of two spheres. 
 

As shown in [19], control points and vectors can be 
directly selected from a Euclidean space. In an adapted 
interface, this allows the user to accurately and easily 
define and control the form of the transition from its 
modelling space.  
 
4.2. Application in a modelling interface 
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During the object rendering process, both frame-buffer 
and Z-buffer are computed from the grid and the 
triquadratic filter. Once these buffers are initialised, the 
standard three-dimensional object visualisation library 
OpenGL is used to build interface components in the 
scene, minimally affecting the interactivity of the 
visualisation. Indeed, if specific graphics hardware are 
used, the processor is mostly discharged of the interface 
component manipulation and rendering (other three-
dimensional object visualisation libraries accelerated by 
graphics hardware could be used with the same 
efficiency). 

To apply binary operators on primitives, at least three 
grids are necessary: One for each primitive and one for the 
resulting object. In our interface, we use a supplementary 
grid to temporarily store a volume. Thus, a modelled 
object can be stored while another is created. The 
temporary object can be used later as a primitive to be 
combined with the current one.  

At this time, our rendering method just allows the 
visualisation of a single grid. A new primitive is 
positioned with regard to the current object, in visualising 
them in the same grid using the classical union operator 
(realised with the min function [26]). It takes 0.23 seconds 
to compute the grid. The classical intersection and 
difference operators are also available and obviously, the 
rendered object resulting from one of these compositions 
can be selected as a new primitive. The sharp transition 
normally created between the combined objects is, in grid 
reconstructed by a triquadratic filter, a small oscillating 
transition of which the size depends on the grid resolution 
(Figure 4.3).  
 

        

        
 

Figure 4.3: Sharp transition between two cylinders. 
Grid Without zoom With zoom 
1283 (a) (b) 
643 (c) (d) 

 
It would be useful if these undesired oscillations could be 
avoided. A solution could consist in applying a filter to 
grid values. More research and experiments are needed in 
this area.  

As described in section 4.1, when “functionally 
defined” transitions are used in Boolean operators, the 
form of the blend can be controlled by points and vectors 

selected in the modelling space. Depending on the 
operator complexity, the computation time of the grid 
varies following table 4.1.  

 
Table 4.1: Time of computation of a grid while using a 
Boolean operator with a “functionally defined” soft transition 
depending on the number of control points used to defined 
its form. 

Number of 
control points 

Computation 
of the grid 

Computation of a plane section 
of 2562 pixels, crossing the grid 

3 0.5 sec 0.20 sec 
4 0.7 sec 0.21 sec 
6 0.9 sec 0.22 sec 
8 1.2 sec 0.24 sec 

12 ≈ 2 sec 0.27 sec 
20 ≈ 3.5 sec 0.34 sec 

 

 

 
Figure 4.4: The plane section is positioned in the 
modelling space with respect to the two combined cylinders 
(a), and the section of the potential field is visualised in a 
two-dimensional viewport (b), in which the transition is 
interactively selected (c). The corresponding object is 
accurately visualised in the three-dimensional modelling 
space (d). 
 

To allow the maximum of interactivity while selecting 
the control points, we visualise the variation of the 
potential field in a plane section crossing the grid. The 
plane is first positioned in the modelling space, with 
respect to the combined primitives (Figure 4.4a). Then the 
section is rendered in a viewport of 5122 pixels (Figure 
4.4b) in approximately 0.08 seconds. The triquadratic filter 
is also used here to faithfully represent the field values of 
the volume. The transition is selected with the mouse in 
this plane section (Figure 4.4c) and when desired, the 
resulting surface can be visualised in the three-
dimensional modelling space (Figure 4.4d).  

(a) 

(d) (c) 

(b) 

(a) (b) 

(c) (d) 



  
  
  

   

Two-dimensional plane section representing the potential 
field values can be used to increase the interactivity (Table 
4.1) and control the potential field variations while 
applying any composition operators with soft transitions. 

For bounded operators, only a small region of the section 
need to be visualised and real time control of the form of 
the transition can be expected. 

 
5. Results 
 

   
 
           
Figure 5.1: Illustration of the visualisation of a smooth free-form isosurface in the usual 5122 
modelling rendering viewport (a) and of its faithful representation of the potential field in a plane 
section (b). Accurate representation of thin details is shown in (c) and (d). 
 
 
 

 
Figure 5.2:           Different  
visualisations of the plane 
section of the potential field: 
(a) uniform colour, (b) 
variation of the colour with 
the potential field value and 
(c) tricolour isosurfaces. 
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Figure 5.3: Rendering of the Marschner & Lobb dataset (413 samples) with an ideal filter (a), the quadratic filter (b) 
and the usual linear filter (c). We can notice that trilinear interpolation gives poor results, especially with surface 
shading. This is essentially due to the erroneous shadings provided by the separation between the signal 
reconstruction and the gradient reconstruction (dark surfaces in 5.2c). 
 
 
6. Conclusion and future work 
 

The combination of a discrete representation of 
potential fields with an adequate interpolation filter 
generates a continuous approximation of the field in a 
bounded area.  

A regular grid allows a fast storage of the potential 
values and the triquadratic approximation filter generates a 
C1 continuous function. Our rendering algorithm provides 
a fast, accurate and smooth visualisation of the field 
isosurfaces reconstructed with the triquadratic filter. Thus, 
the definition of volume objects using the association of 
these two components allows us to obtain a faithful 
visualisation and provide interactive modelling tools. 

These properties of our volume objects have been 
successfully illustrated with the application of advanced 
Boolean composition operators with “functionally 
defined” transitions in an interactive modelling software. 

For these reasons, the proposed modelling kernel 
corresponds to most of our wishes. Further studies can 
now to be done to improve and complete this approach. In 
particular, research needs to be undertaken in the 
following areas: 
•  How to apply space mapping operators. 
•  Potential fields are stored with float values (coded with 

32 bits). As suggested by V. Adzhiev and al [13], the 
values can be mapped in short integer and coded with 
16 bits. Our rendering algorithm already supports such 
a grid and the 16 bits left could then be used to store 
colour components.  

•  Different filters could be applied on the grid values to 
try to avoid aliasing in the approximation of sharp 
edges. 

•  A local update of the data structure and of the rendered 
image would increase the interactivity while applying 
local operators. 
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