

Triquadratic Reconstruction for
Interactive Modelling of Potential Fields

Loïc Barthe
Rainbow Group

Computer Laboratory
University of Cambridge (UK)

lb282@cl.cam.ac.uk

Benjamin Mora
Department of Computer Science
University of Toulouse (France)

mora@irit.fr

Neil Dodgson
Rainbow Group

Computer Laboratory
University of Cambridge (UK)

nad@cl.cam.ac.uk

Malcolm Sabin
Numerical Geometry ltd.

26 Abbey Lane, Lode
Cambridge, UK

malcolm@geometry.demon.co.uk

Abstract

We present a data structure for three-dimensional
fields C1 continuous in the modelling space. Regular grids
storing the field values discretely are combined with a
triquadratic approximation filter to define volume objects.
This association of a grid and an
approximation/interpolation filter allows the field to be
defined by a C1 continuous real function and the surface to
be directly visualised from its own equation. We show how
accurate and high quality interactive visualisation is
obtained during the modelling process, and we explain
why the visualisation is faithful to the object definition. We
also describe, as an example of application of our data
structure, how advanced Boolean operators realised with
soft or “functionally controlled” transitions are performed
under the influence of an interactive modelling tool.

1. Introduction

Many algorithms for the visualisation of discrete three-
dimensional volume data now exist and most of them
allow interactive visualisation of isopotential surfaces
[1,2] or of potential variations in the volume (using
transparency or colour variation on the surface) [3,4].
Some new hardware also integrates three-dimensional
texture rendering and pixel or vertex shaders, which are
efficient tools to increase interactivity in volume
visualisations [5]. A significant advantage of this
representation is that it offers an alternative to the classical
polygon rendering while avoiding some topological
problems resulting from shape polygonalisation [6].

While fast visualisation is available, techniques to
model such data interactively need to be improved and
new models proposed. Three-dimensional data are usually
stored in regular grids. On each voxel of the grid, the data
can be a scalar, the three components of the colour (four if
the alpha channel is used), or any other multidimensional
vector data. As shown by V.V. Savchenko et al. [7], this
data structure is a template to unify objects defined by
potential fields (discrete or not). Thus a wide variety of

different input models, like output scanner 3D volumes,
reconstructed field from scattered data [8,9,10],
reconstructed distance field from isosurface [11] or
modelled implicit objects [12] can be integrated and
manipulated with a common representation. These volume
objects can usually be defined by continuous real functions
as f(x,y,z)≤0 [7]. Conversion methods to convert one
representation to another and details on voxel based object
representation/manipulation are widely discussed in
[13,14]. Different operations can then be applied on these
objects from classical linear transformations and Boolean
composition to more advanced algebraic operations [14],
space mapping [15], sweeping by a moving solid [16] and
Boolean compositions with soft [17,18] or “functionally
defined” transitions [19].

Different families of volume modeller exist. Some, like
the BlobTree, are essentially based on function
representation and their composition in a CSG tree [18].
To obtain interactivity, only bounded skeleton primitives
are used [20,21,22] and the surface is polygonalised for
rendering. Others are based on discrete structures like
regular grids [23]. There are also hybrid systems which
integrate as primitives most of the volume representations
[13]. The primitives are manipulated using their own
representation. Different techniques are then available to
interactively render the surface: polygonalisation, points,
ray-casting using tri-linear interpolation, etc. The
interactively visualised surface is always an approximation
of the modelled object and depending on this
approximation precision and on the sharpness of the shape,
the error can grow, consequently reducing fidelity. ADFs
[24] are adaptive octrees, which generally become deeper
in proximity to the surface. They allow a faithful
interactive rendering of the surface [25] but the value of
the potential at a random point of the working space has to
be computed as a distance from the surface, making
combination with soft transition unsuitable for precise
interactive modelling.

Our aim is to propose a unified structure to precisely
and interactively model and visualise volume objects. The
modeller must be able to import objects from different

nad10
Proceedings of SMI2002: International Conference on Shape Modelling and Applications, 17-22 May 2002, Banff, Alberta, IEEE press, pp. 145-153, ISBN 0-7695-1546-0Note: this version of the paper contains some extra material which does not appear in the published proceedings

sources and to convert them into its internal
representation. Then all operations on objects will be
applied on this new representation. Objects must then be
able to be saved and exported in different formats. The
wish for precision and interactivity (during both modelling
and visualisation processes) leads us to the following
requirements:
• Objects are represented as volumes.
• Visualisation is interactive and offers a high shape

representation quality.
• Visualisation is an accurate representation of the

object.
• The modelling process is accurate and interactive.
• Transformations can be applied to objects.
• Model and interface are adapted to the use of Boolean

composition operators with “functionally defined” and
point-by-point controlled transitions.
The goal of this paper is not to propose a complete

solution, but as a first step, to present and to justify a
kernel on which such a modeller can be based. In the
following section, we present and justify our choice of
data structure. Regular grids discretely storing the field
values combined with a triquadratic approximation filter
are used to defined volume objects. This association of a
grid and an approximation/interpolation filter allows the
field to be defined by a C1 continuous real function and the
surface to be directly visualised from its own equation. In
the third section, the triquadratic filter is described. We
present the visualisation method and explain how
interactive and high precision visualisation is obtained.
This allows us to show that the visualisation is faithful to
the object definition. Modelling tools and processes are
presented in the fourth section. We discuss the use of
Boolean composition with “functionally defined”
transition and we describe, as an example of use of our
data structure, an interactive interface to allow the user to
precisely control the modelled shape. To illustrate the
work presented in this paper, we conclude with some
examples.

2. Volume data structure

There is currently a great deal of research interest in
finding methods to define, model or fit volume/surface
data using real continuous potential functions f: R3→R.
Among the reasons that motivate this interest, we draw
attention to the wide variety of geometric operations that
are available, the straightforward evaluation of the position
of a point in regards to the surface and the possibility to
choose and adapt the visualisation accuracy from the
surface equation.

A volume described by a potential function f: R3→R is
defined as follows: The set of points p(x,y,z) for which
f(x,y,z)=0 defines the surface and the set of points p for

which f(x,y,z)<01 defines the inside of the volume. This
representation is implicit and the generated zero isosurface
is commonly called an implicit surface. Primitives fi thus
defined are transformed or combined by composing them
with operators φ: Rn→R, where n is the number of
primitives [17]. The result of an operation F=φ(f1,..,fn) is a
new primitive also defined as a volume. Operations on
primitives are organised in hierarchical structures like
CSG trees. Leaves are the primitives and nodes are
operators. At each node, the new equation is a composition
of the combined or transformed primitives. This implied
that the equation complexity grows with the size of the
tree. With even a small number of levels, the function
evaluation become expensive in computing time and
rendering the shape in interactive time become more
difficult. Moreover, while a fast evaluation of combined
functions fi at the surface level is sufficient to interactively
compose primitives with classical Boolean composition
operators [26], Boolean operators with soft transition
require, in addition, fast evaluation in the transition area
[21,27,18] and Boolean composition with “functionally
defined” transition requires fast evaluation in the whole
modelling space because the stretch of the transition is not
predictable before it has been created.

A formal visualisation of the potential function is not
possible in most cases, the potential function must be
sampled and, therefore, the reconstructed isosurface will
always be an approximation to the initial function. To
allow the computation time to depend only on the equation
complexity of the applied operation or of the imported
primitive, we store the potential in a regular voxel grid at
each level of the tree (leaves and nodes). The grid
furnishes the sampled representation of the potential field.
Thus, this method takes advantage of the fact that direct
rendering of a voxel grid is possible [28], and the loss of
time generated by the construction of an intermediate
structure (usually a triangular mesh) to visualise the
surface is avoided. ADFs or adaptive irregular grids are
not used because we need to construct the grid as fast as
possible without the problem of discontinuities while
interpolating the values in the grid to evaluate the field at a
point p of R3.

However visualisation requires the inverse process that
reconstructs a signal everywhere in the volume. This
operation can be performed using the well-known
convolution operator:

()() () ()∫
+∞

∞−

−×=∗ τττ dtgftgf ,

where f is the sampled function and g the filter. It is
obvious that the quality of the reconstructed signal is
dependent on the complexity of the filter. Thus the choice

1 The sign of the function defining the inside is chosen by convention. In
this paper, we use f(x,y,z)<0 but the inverse convention where the inside
of the volume is defined by f(x,y,z)>0 could also be chosen.

of an efficient filter is essential for this application.
Several kinds of 3D filters for volume visualisation have
been studied in many ways in the past [29,30,31]. The
most studied are: the linear filter, cubic filter based on BC-
splines, gaussian filters and windowed sinc filters. Even
though the linear filter is widely used in the volume
rendering applications, studies have shown that it gives
poor quality results. Better results can be obtained with
cubic filters or windowed sinc filters. Indeed, the original
function is better approximated and they allow smooth
transitions due to a high degree of continuity. However, a
tricubic filter requires 64 volume samples to reconstruct
the function within a voxel, and windowed sinc filters
need even more samples. Thus their complexity prohibits
any use within interactive software. Therefore the main
problem of our approach is to find a filter allowing both
interactive renderings and smooth reconstructions of the
isosurfaces.

A useful solution can come from a triquadratic filter
that allows interactive renderings [32] with a high quality
recontruction. It has been shown that quadratics are
significantly faster to compute than cubics whilst
providing comparable quality in the resulting interpolation
[33]. In adding this filter to the grid to define objects, the
original implicit representation is reduced to a smooth C1
continuous representation. We thus combine the
advantages of a sampled representation to store the
potential values and a real continuous C1 representation to
define and evaluate in a constant time the value of the
potential and its first derivative everywhere in the
modelling space, whatever the shape complexity. Thus,
both the grid and the triquadratic approximation define our
objects. Objects are no longer defined by their original
data structure. This ensures that if the filter is used to
accurately visualise the grid and if the rendering viewport
is adapted to the grid’s size, no unwanted noise or detail
will appear if a more accurate visualisation technique is
used. It is obvious that the thinness of the details in the
modelled shape directly depends on the grid size, and the
maximum size of the grid depends on the machine
computation performance and the range of time considered
as interactive.

3. Triquadratic reconstruction

This section describes our visualisation method, which
is based on ray casting. The quadratic filter and its
reconstruction properties are first described. Then we
show how high quality visualisation and interactive
rendering are provided with the use of the triquadratic
approximation filter to smoothly reconstruct the potential
values of a regular grid. We conclude this section with
some optimisations that allow us to decrease computation
time and reach the interactivity.

3.1. One-dimensional quadratic filter

Figure 3.1: 1D filter

Before introducing the triquadratic filter, we describe
the filter in a one-dimensional case. Three neighbouring
samples (Pi-1, Pi, Pi+1) are needed (fig. 1) in order to
reconstruct the one-dimensional signal within the interval
[i-0.5, i+0.5]. Now the reconstruction is made in two steps.
First, two points Pi- and Pi+, which are respectively the
middles of the two segments [Pi-1, Pi] and [Pi, Pi+1], are
defined:

2
1 ii

i
PPP += −

−

2
1+

+
+= ii

i
PPP .

Then a quadratic Bézier curve is defined from the three
control points (Pi-1, Pi, Pi+1). Thus the reconstruction
equation, with t=0 at i-0.5 and t=1 at i+0.5, can be written
as :

() () ()() ()()

()
2

..
2

..1...1.1

1
1

211

,, 11

ii
iii

ii

iiiiPPP

PPtPPtPPP

PtPttPtPtttf
iii

++−+

 −+=

+−++−−=

−
−

+−

+−+−

or in a matrix representation :

() []

×

−
−

×=

+

−

+−

1

1
2

,,

5.05.00
011
5.015.0

1
11

i

i

i

PPP

P
P

P
tttf

iii

The C0 and C1 continuities are obvious. While the filter
function is internally C2 continuous, the continuity across
the knots, between segments, is only guaranteed to be C1
by construction.
Another interesting property is that the reconstructed
signal does not pass through the sampled points. Local
maxima are never reached and the high frequencies of the
signal are smoothed.
The final property of note is the first derivative. It is
analytically given by :

()() ()
() +−

+−

+−=
−+−−=

+−

ii

iiiiPPP

GtGt
PPtPPtf

iii

..1
..1' 11,, 11

with :

1−− −= iii PPG iii PPG −= ++ 1 .

i-0.5i-1 i+1 i+0.5 i

Pi-1

Pi
Pi+1

Pi-
Pi+

The derivative function is in fact a linear interpolation of
two middle difference gradients. In a usual volume
visualisation, the gradient is estimated with a (tri)linear
interpolation of central differences gradients computed at
the sampled points using the formula :

() ()iGGGPPiG MDIFiiiiCDIF =+=−= +−−+

22
11 .

The equation above shows that the gradient estimated
with the usual central difference gradient is less accurate
than the gradient estimation provided by the quadratic
filter. Indeed the central difference at the sampled points is
the mean value of two middle difference gradients Gi- and
Gi+. Thus the interpolation of the mean values (Mi=1/2.Gi-
+ 1/2 .Gi+) used in the central difference estimation leads
to a loss of information in the gradient reconstruction, by
regard to the use of the direct interpolation of middle
differences Gi. However the quadratic filter is more
sensitive to the data noise that is fortunately usually not
present in the case of three-dimensional signals generated
from equations.

3.2. Extension to volumes

The extension to three-dimensional volumes is
straightforward and the previous results are also true while
extended to this case. 27 volume samples (3×3×3) are now
required to reconstruct the C1 continuous signal within a
parallelepiped aligned on the central sample (fig. 3.2).
Like the usual trilinear interpolation, applying the previous
filter on the three axes performs the reconstruction. First 9
passes on the x axis are done providing 9 intermediate
samples that undergo 3 passes on the y axis. It leads to 3
intermediate results that finally are used in one pass on the
z axis.

Figure 3.2: three-dimensional reconstruction

The final reconstructed potential function h of the

signal within the parallelepiped at a location (x, y, z) can
be written as:

() ∑
=

=
2

0,,
222..000 .,,

kji

kji
ijkPP zyxSzyxh . (1)

Here the 27 Sijk coefficients are computed from the 27 grid
potentials (Pijk) by using a 27×27-transformation matrix
representative of the triquadratic filter. Fortunately, a lot of

matrix coefficients are null, reducing the computations of
the Sijk coefficients.

3.3. Fast Visualisation

By now the visualisation of the implicit surface
crossing this parallelepiped of reconstruction can be
reduced to the visualisation of a C1 continuous surface
defined by the equation h(x,y,z)=0, with x, y and z in
[0..1]. However it is not obvious how to find the projection
of this surface on the image plane in an interactive time.
The proposed solution allows fast rendering while
preserving a high quality of visualisation. It is based on the
fact that every ray going through this parallelepiped can be
written in a parametric form:

() () ()010010010 .,.,. zztzzyytyyxxtxx −+=−+=−+= (2) 2

By substituting the coordinates in the previous equation,
the reconstruction along the ray can be written as a sixth
degree polynomial:

() ∑
=

≤≤=
6

0
10.

i

i
i ttCth . (3)

This polynomial should be solved in order to find the
intersection with the isosurface. However there is no
algorithm that allows the accurate computation of such a
solution in a very short time. The Sturm theorem could be
used in order to efficiently approximate the roots, but its
implementation is currently too expensive to be used in an
interactive visualisation tool. Thus a less elegant but more
efficient solution consisting in sampling many values
(fixed to 16 here) along the ray has been used. Once an
intersection has been detected (i.e. h(ti-1) < 0 < h(ti)), the
final value of t is linearly interpolated from the last two
samples. This allows us to obtain an accurate
approximation of the intersection between the ray and the
isosurface. Finally the shading process requires the surface
normal that can be computed from the intersection point
using the following equation:

()=∇ zyxh PP ,,222..000

⋅∑

⋅∑

⋅∑

=

=

=

dzzyxSd

dyzyxSd

dxzyxSd

kji
kji

ijk

kji
kji

ijk

kji
kji

ijk

2

0,,

2

0,,

2

0,, .

The accurately raytraced surface is the zero isosurface
reconstructed from the grid by the triquadratic filter. This
solves one of our requirements: The visualised shape is a
faithful representation of the modelled one.

2 Where (x0,y0,z0) are the coordinates of the first point of intersection
between a ray and a voxel, (x1,y1,z1) are the coordinates of the second and
t ∈ [0,1].

Volume samples

Region of
reconstruction

3.4. Optimisations

Because many computations are required by the
quadratic reconstruction, the visualisation process must be
deeply optimised. Our optimised algorithm allows
interactive rendering times (less than 1 second) for the
visualisation of 2563 voxels in a 5122 viewport using an
AMD Athlon processor at 1.0 GHz. Furthermore this
algorithm allows interactive settings of the isosurface
threshold. A complete description is given in [32], so we
will just describe here the main optimisations.

The fast computation of coefficients Ci of the
polynomial equation (Equation 3) represents the main
requirement to perform the interactive rendering. They
depend on both the Sijk coefficients (Equation 1) and the
ray parameters (Equation 2). A naïve raycasting algorithm
would compute the Sijk values for every voxel crossed by
the ray. A more suitable approach is to use a sorted
representation of the object where voxels are projected in a
front-to-back order. Then the Sijk values are computed only
once for all the rays going through the voxel. Their
computation requires 316 additions and 80 multiplications
per voxel. The evaluation of the Ci coefficients from the
ray parameters and the Sijk values requires an addition of
724 multiplications and 108 additions per ray. But most of
these multiplications depend only on the ray position, and
by using a large set of precomputed rays (instead of the
real rays), the number of multiplications is reduced to 108
per ray.

A Min-Max octree is also used in order to compute
only the voxels of interest. The octree is run in a front-to-
back order and the nodes that do not enclose the min-max
values are skipped. The leaf nodes contain the min and
max values of the 27 samples needed for the
reconstruction. These samples also represent an absolute
boundary of the reconstructed signal within the voxel.
Trees are often used in computer graphics. They specially
increase raytracers performances while allowing to find
the intersection between the ray and the sampled surface in
O(Log(n)) steps [34]. Our implementation of an octree
provides the same improvement. Rendering time is not
anymore principally dependent on the volume size, but on
the image size. The use of the Min-Max octree as an
additional structure may seems to be a contradiction within
our approach, but its construction time costs less than one
second for a grid of 1283 voxels and it allows our
rendering technique to be interactive.

4. Potential function manipulation

The data structure and its visualisation method are now
well defined. We point out that interactivity during the
modelling process depends on the size of the grid and the
computation complexity of the operators whereas
interactive visualisation essentially depends on the size of
the rendering window, whatever the grid.

The computer used to test the modeller has an AMD K7 at
1.0 Ghz processor and 256 Mbytes of DDR memory. The
standard grid is composed of 1283 float values of storage
eight Mbytes each and the visualisation is done in a 5122
viewport (larger viewports are available for less interactive
but finer rendering). Times given in this section refer to
this configuration.

In order to model complex objects, primitives have to
be combined or transformed. In this section we show how
operators are applied and we discuss the limitations caused
by the bounded representation of the potential field in a
grid. We also recall how “functionally defined” precise
blending is performed and controlled in order to introduce
requirements for a suitable interface. This allows us to
show how our data structure can be use in an interactive
interface to precisely model volume objects. The
application is an example given to illustrate our model
capabilities.

4.1. Operators

Operators φcomp defined3 as a function of primitives fi
are directly applied on the grids representing the
primitives. The potential field resulting from the operation
is stored in a new grid and the modelled object is defined
by its approximation by the triquadratic filter. This
approach allows us to modify or compose objects in a time
independent of the shape complexity.

But grids are large data structures: Their storage
requires a lot of memory. To define fine objects in a large
enough modelling space, we use grids that are 1283 float
values (smaller or larger grids can be used depending on
the processor speed). It is inconceivable to store all the
grids representing each node or leaf of the tree: Even if a
lot of memory is available, objects defined by many
operations are liable to overflow the maximum available
storage space. For this reason, it is unsuitable to modify
the object by acting on primitives from which it is defined.
These primitives being nodes or leaves situated at lower
level of the tree. Actually, if a node or a leaf of the current
object is modified, all the computation will have to be
done from the leaves to the current node. This complete
evaluation of the tree can be a very long process.

For this reason, it is preferable to directly apply
operators on the current object to be able to modify it in an
interactive time (if operators allowing the desired
modification are available). This is important to take into
account when modelling. Indeed, to limit backtracks in the
tree and long computations, the user has to carefully and
accurately model his object operation by operation.

Space mapping operator φmap transforms the space in
which the potential field is defined. While deformations
like tapering, twisting or bending can be applied on

3 Offsetting, Boolean composition with or without soft transitions and
metamorphoses are elements of this operator set.

volume objects when their equation is known [35,18], it
becomes delicate when the volume is defined in a bounded
space without the knowledge of the potential values
outside the boundaries and when the operator applies itself
on the whole modelling space. Even for basic operators
like translation or rotation, how can we compute all the
values of the grid representing a volume after its
translation where at least metric and maybe curvature of
the potential field have to be conserved?

We do not give a solution to this problem, which is
illustrated in two dimensions in figure 4.1. Specific
research will have to be done to correctly surround this
question and to propose suitable solutions. An introduction
to this problem can be found in [36] which catalogues a
variety of possible solutions. Thus, only bounded space
mapping operators [37] having their bounded box included
in the modelling space are able to be directly used on our
volume objects. A solution to avoid this problem is to use
only bounded primitives [16,38,18,23] sampled in an
infinite grid [23]. The values outside the boundaries are a
known constant scalar and unknown areas are avoided.
Moreover, even if the grid is infinite, the visualisation
could remain interactive (rendering speed depends mostly
on the viewport size). Volumes defined by bounded
potential fields can be used as input objects, but
mechanisms to restrict all primitives to this representation
are out of the scope of this paper.

Figure 4.1: It is an open question how to compute the
potential field values in the unknown area while conserving
regular variation of the potential field.

Because each primitive is stored in its own grid, the
use of n-ary operators leads us to store at least the n grids,
which can costs too much memory. To minimise the
number of stored grids, we only use unary and binary
operators. As shown in [17], this does not consequently
restrict the variety of available operations. Moreover,
because it is defined as the sum of potential functions
having specific field variations, even the classical n-ary
blending operator used for “blobs” can be decomposed and
applied as a succession of binary blending operators [23].

Boolean composition operators with soft transition are
considered as powerful and useful [20,39,7,18] for implicit
modelling, therefore, one of our main preoccupations is to
propose an accurate and interactive tool to realise them. As
shown in [19], point-by-point control of the blend is

possible and the classical smooth and regular curved or
inflated transition can be extended to a “functionally
controlled” transition.
The transition is said to be “functionally controlled” when
its form is defined by functions h: R→R. Moreover, the
functions used to perform the transition preserve the
metric of the combined primitives outside the part of the
fields affected by the blend [19] and keep regular
variations inside, which make this approach very relevant
for composition of volume objects [40]. The used
expressions for Boolean compositions are the following:

() () ()21212121 ,min,: ffhffffOO i
bool −−=∪ φ i=1,2 ,

() () ()21212121 ,max,: ffhffffOO i
bool −+=∩ φ i=1,2 ,

() () ()21212121 ,max,:/ ffhffffOO i
bool ++−=φ i=1,2 .

 Where φbool are binary Boolean composition operators,
potential functions f1 and f2 represent the combined
primitives and functions hi: R→R (i=1,2) are 1D cubic
polynomial splines controlled point-by-point [41] that
define the form of the transition. Where |f1-f2|=0 (f1=f2),
the min/max function generates a differential discontinuity
(the tangent at this point is controlled to ensure C1
continuity): f1 is selected on one side of the frontier (the
set of points where |f1-f2|=0) and f2 is selected in the other.
For each side a function h has to be defined. Function h1
defines the transition in the side where f1 is selected and
function h2 where f2 is selected, as illustrated figure 4.2.
More details are given in [19].

Figure 4.2: Union of two spheres.

As shown in [19], control points and vectors can be
directly selected from a Euclidean space. In an adapted
interface, this allows the user to accurately and easily
define and control the form of the transition from its
modelling space.

4.2. Application in a modelling interface

Boundaries of the modelling space Translation vector

Unknown area

Object

Function h1

f1=0

f2=0

Frontier:
|f1-f2|=0

Function h2

Control
points

Tangent

During the object rendering process, both frame-buffer
and Z-buffer are computed from the grid and the
triquadratic filter. Once these buffers are initialised, the
standard three-dimensional object visualisation library
OpenGL is used to build interface components in the
scene, minimally affecting the interactivity of the
visualisation. Indeed, if specific graphics hardware are
used, the processor is mostly discharged of the interface
component manipulation and rendering (other three-
dimensional object visualisation libraries accelerated by
graphics hardware could be used with the same
efficiency).

To apply binary operators on primitives, at least three
grids are necessary: One for each primitive and one for the
resulting object. In our interface, we use a supplementary
grid to temporarily store a volume. Thus, a modelled
object can be stored while another is created. The
temporary object can be used later as a primitive to be
combined with the current one.

At this time, our rendering method just allows the
visualisation of a single grid. A new primitive is
positioned with regard to the current object, in visualising
them in the same grid using the classical union operator
(realised with the min function [26]). It takes 0.23 seconds
to compute the grid. The classical intersection and
difference operators are also available and obviously, the
rendered object resulting from one of these compositions
can be selected as a new primitive. The sharp transition
normally created between the combined objects is, in grid
reconstructed by a triquadratic filter, a small oscillating
transition of which the size depends on the grid resolution
(Figure 4.3).

Figure 4.3: Sharp transition between two cylinders.
Grid Without zoom With zoom
1283 (a) (b)
643 (c) (d)

It would be useful if these undesired oscillations could be
avoided. A solution could consist in applying a filter to
grid values. More research and experiments are needed in
this area.

As described in section 4.1, when “functionally
defined” transitions are used in Boolean operators, the
form of the blend can be controlled by points and vectors

selected in the modelling space. Depending on the
operator complexity, the computation time of the grid
varies following table 4.1.

Table 4.1: Time of computation of a grid while using a
Boolean operator with a “functionally defined” soft transition
depending on the number of control points used to defined
its form.

Number of
control points

Computation
of the grid

Computation of a plane section
of 2562 pixels, crossing the grid

3 0.5 sec 0.20 sec
4 0.7 sec 0.21 sec
6 0.9 sec 0.22 sec
8 1.2 sec 0.24 sec

12 ≈ 2 sec 0.27 sec
20 ≈ 3.5 sec 0.34 sec

Figure 4.4: The plane section is positioned in the
modelling space with respect to the two combined cylinders
(a), and the section of the potential field is visualised in a
two-dimensional viewport (b), in which the transition is
interactively selected (c). The corresponding object is
accurately visualised in the three-dimensional modelling
space (d).

To allow the maximum of interactivity while selecting
the control points, we visualise the variation of the
potential field in a plane section crossing the grid. The
plane is first positioned in the modelling space, with
respect to the combined primitives (Figure 4.4a). Then the
section is rendered in a viewport of 5122 pixels (Figure
4.4b) in approximately 0.08 seconds. The triquadratic filter
is also used here to faithfully represent the field values of
the volume. The transition is selected with the mouse in
this plane section (Figure 4.4c) and when desired, the
resulting surface can be visualised in the three-
dimensional modelling space (Figure 4.4d).

(a)

(d) (c)

(b)

(a) (b)

(c) (d)

Two-dimensional plane section representing the potential
field values can be used to increase the interactivity (Table
4.1) and control the potential field variations while
applying any composition operators with soft transitions.

For bounded operators, only a small region of the section
need to be visualised and real time control of the form of
the transition can be expected.

5. Results

Figure 5.1: Illustration of the visualisation of a smooth free-form isosurface in the usual 5122
modelling rendering viewport (a) and of its faithful representation of the potential field in a plane
section (b). Accurate representation of thin details is shown in (c) and (d).

Figure 5.2: Different
visualisations of the plane
section of the potential field:
(a) uniform colour, (b)
variation of the colour with
the potential field value and
(c) tricolour isosurfaces.

(a) (b)

(c)

(d)

(a) (c) (b)

Figure 5.3: Rendering of the Marschner & Lobb dataset (413 samples) with an ideal filter (a), the quadratic filter (b)
and the usual linear filter (c). We can notice that trilinear interpolation gives poor results, especially with surface
shading. This is essentially due to the erroneous shadings provided by the separation between the signal
reconstruction and the gradient reconstruction (dark surfaces in 5.2c).

6. Conclusion and future work

The combination of a discrete representation of
potential fields with an adequate interpolation filter
generates a continuous approximation of the field in a
bounded area.

A regular grid allows a fast storage of the potential
values and the triquadratic approximation filter generates a
C1 continuous function. Our rendering algorithm provides
a fast, accurate and smooth visualisation of the field
isosurfaces reconstructed with the triquadratic filter. Thus,
the definition of volume objects using the association of
these two components allows us to obtain a faithful
visualisation and provide interactive modelling tools.

These properties of our volume objects have been
successfully illustrated with the application of advanced
Boolean composition operators with “functionally
defined” transitions in an interactive modelling software.

For these reasons, the proposed modelling kernel
corresponds to most of our wishes. Further studies can
now to be done to improve and complete this approach. In
particular, research needs to be undertaken in the
following areas:
• How to apply space mapping operators.
• Potential fields are stored with float values (coded with

32 bits). As suggested by V. Adzhiev and al [13], the
values can be mapped in short integer and coded with
16 bits. Our rendering algorithm already supports such
a grid and the 16 bits left could then be used to store
colour components.

• Different filters could be applied on the grid values to
try to avoid aliasing in the approximation of sharp
edges.

• A local update of the data structure and of the rendered
image would increase the interactivity while applying
local operators.

References

[1] W. Lorensen and H. Cline, “Marching cubes: A high-
resolution 3D surface construction algorithm”, SIGGRAPH’87,
1987, pp. 163-169.

[2] Balazs Csébfalvi, Andreas König, Eduard Gröller, “Fast
Surface Rendering of Volumetric Data”, WSCG’2000, short
paper, 2000.

[3] P. Lacroute and M. Levoy, “Fast volume rendering using a
shear-warp factorization of the viewing transformation”,
SIGGRAPH’94, 1994, pp. 451-458.

[4] G. Knittel, “The Ultravis System”, IEEE/ACM SIGGRAPH
Volume visualization and graphics symposium 2000, October
2000, pp. 71-78.

[5] K. Engel, M. Krauss and T. Ertl, “High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading”,
Proc. of Eurographics/Siggraph Graphics Hardware Workshop
2001, 2001.

[6] L.P. Kobbelt, M. Botsch, U. Schwanecke and H-P Seider,
“Feature sensitive surface from volume data”, Computer
Graphics Proceeding, Annual Conference Series August 2001,
pp. 57-66,.

[7] V.V. Savchenko, A.A. Pasko, A.I. Sourin and T.L. Kunii,
“Volume Modelling: Representations and advanced operations”,
Proc. of Computer Graphics International’98, June 1998, pp. 4-
13.

[8] G. Turk and J.F O’Brian, “Shape transformation using
variational implicit surfaces”, Computer Graphics Proceedings,
Annual Conference Series, 1999.

[9] B.S. Morse, T.S. Yoo, P. Rheingans, D.T. Chen and K.R.
Subramanian, “Interpolating implicit surfaces from scattered
surface data using compactly supported radial basis functions”,
Proc. of Shape Modeling International’01, May 2001, pp. 89-98.

[10] J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R.
Fright, B.C. McCallum and T.R. Evans, “Reconstruction and
representation of 3D objects with radial basis functions”,

 (a) (b) (c)

Computer Graphics Proceedings, Annual Conference Series,
August 2001, pp. 67-76.

[11] M. Jones and R. Satherley, “Shape representation using
space filled sub-voxel distance fields”, Proc. of Shape Modeling
International’01, May 2001, pp. 316-325.

[12] J. Bloomenthal, C. Bajaj, J. Blinn, M.P. Cani-Gascuel, A.
Rockwood, B. Wyvill and G. Wyvill, Introduction to implicit
surfaces, Morgan Kaufmann Publishers, 1997.

[13] V. Adzhiev, M. Kazakov, A. Pasko and V. Savchenko,
“Hybrid system architecture for volume modelling”, Computer &
Graphics, 24(1), 2000, pp. 67-78.

[14] M. Chen and J.V. Tucker, “Constructive volume
geometry”, Computer Graphics forum, 19(4), pp 281-293, 2000.

[15] V. Savchenko and A. Pasko, “Transformation of
functionally defined shapes by extended space mapping”, The
Visual Computer, 14(5/6), 1998, pp. 257-270.

[16] A. Sourin and A. Pasko, “Function representation for
sweeping by a moving solid”, IEEE Transaction on Visualization
and Computer Graphics, 2(1), pp 11-18, 1996.

[17] A. Pasko, V. Adzhiev, A. Sourin and V. Savchenko,
“Function representation in geometric modeling: Concepts,
implementation and applications”, The visual Computer, 8(2),
1995, pp. 429-446.

[18] B. Wyvill, A. Guy and E.Galin, “Extending the CSG tree:
Warping, blending and Boolean operations in an implicit surface
modeling system”, Computer Graphics Forum, 18(2), June 1999,
pp. 149-158.

[19] L. Barthe, V. Gaildrat and R. Caubet, “Extrusion of 1D
profiles: Theory and first application”, International Journal of
Shape Modeling, 2002, to appear.

[20] J.F. Blinn, “A generalization of algebraic surface drawing”,
ACM Transaction on Graphics, 1(3) , July 1982, pp. 235-256.

[21] J. Bloomenthal and B. Wyvill, “Interactive techniques for
implicit modelling”, Computer Graphics (proc. of
SIGGRAPH’90), 24(2) , 1990, pp. 109-116.

[22] B. Crespin and C. Schlick, “Implicit sweep objects”,
Eurographics’96, 15(3), 1996, pp. 165-174.

[23] E. Ferley, M.P. Cani and J.D, “Gascuel. Practical
volumetric sculpting”, The Visual Computer, 16(8) , December
2000, pp. 469-480.

[24] S.F. Frisken, R.N. Perry, A. Rockwood and T.R. Jones,
“Adaptively sampled distance fields: A general representation of
shape for computer graphics”, Computer Graphics Proceedings,
Annual Conference Series, July 2000.

[25] R.N. Perry and S.F. Frisken, “Kizamu: A system for
sculpting digital characters”, Computer Graphics Proceedings,
Annual Conference Series, August 2001, pp. 47-56.

[26] A. Ricci, “A constructive geometry for computer
graphics”, The Computer Journal, 16(2) , 1973, pp. 157-160.

[27] M.P. Cani-Gascuel and M. Desbrun, “Animation of
deformable models using implicit surfaces”, IEEE Transaction
on Visualisation and Computer Graphics, 3(1), March 1997.

[28] A. Kaufman, D. Cohen and R. Yagel, “Volume graphics”,
IEEE Computer, 26(7), July 1993, pp. 51-64.

[29] S.R. Marschner and R.J. Lobb, “An evaluation of
reconstruction filters for volume rendering”, Proc. of
visualization’94, October 1994, pp. 100-107.

[30] T. Möller, R. Machiraju, K. Mueller and R. Yagel,
“Evaluation and design of filters using a Taylor series
expansion”, IEEE Transaction on visualization and computer
graphics, vol.3, no. 2, April 1997, pp. 184-190.

[31] T. Theubl, H. Hauser and E. Gröller, “Mastering windows:
Improving reconstruction”, Proc. of IEEE/ACM SIGGRAPH
Volume visualization and graphics symposium 2000, October
2000, pp. 101-108.

[32] B. Mora, J.P. Jessel and R. Caubet, “Visualization of
isosurfaces with parametric cubes”, Eurographics’01 Proc., vol.
20 no. 3, September 2001, pp. 377-384.

[33] N.A. Dodgson, “Quadratic interpolation in image
resampling“, IEEE Transaction on Image Processing, 6(9) ,
September 1997, pp. 1322-1326.

[34] I. Wald, P. Slusallek, C.Benthin and M. Wagner,
“Interactive rendering with coherent raytracing”,
Eurographics’01 Proc., vol. 20 no. 3, September 2001, pp. 377-
384.

[35] A.H. Barr, “Global and local deformations of solid
primitives”, Computer Graphics, 18(3) , 1984, pp. 21-30.

[36] N.A. Dodgson, “Image Resampling“, Technical Report no.
261, University of Cambridge Computer Laboratory, August
1992.

[37] B. Crespin, “Implicit free-form deformations”, Proc. of
Implicit Surfaces’99, 1999.

[38] C. Grimm, “Implicit generalized cylinders using profile
curves”, Proc. of Implicit Surfaces’99, 1999, pp. 33-41.

[39] C. Hoffman and J. Hopcroft, “Automatic surface
generation in computer aided design”, The Visual Computer, 1,
1985, pp. 92-100.

[40] A.P. Rockwood, “The displacement method for implicit
blending surfaces in solid models”, ACM Transaction on
Graphics, 8(4) , 1989, pp. 279-297.

[41] C. de Boor, A practical guide to spline, Applied
Mathematical Sciences, 27, pp. 156-162, 1978.

