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Abstract

We introduce the Fast Marching farthest point sampling (FastFPS) approach for the progressive sampling of
planar domains and curved manifolds in triangulated, point cloud or implicit form. By using Fast Marching
methods2, 3, 6 for the incremental computation of distance maps across the sampling domain, we obtain a farthest
point sampling technique superior to earlier point sampling principles in two important respects. Firstly, our
method performs equally well in both the uniform and the adaptive case. Secondly, the algorithm is applicable to
both images and higher dimensional surfaces in triangulated, point cloud or implicit form. This paper presents
the methods underlying the algorithm and gives examples for the processing of images and triangulated surfaces.
A companion report4 provides details regarding the application of the FastFPS algorithm to point clouds and
implicit surfaces.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling; I.4.5 [Computer Graphics]: Image Processing and Computer Vision

1. Introduction

We consider the problem of sampling progressively from
planar domains or curved manifolds in triangulated, point
cloud or implicit form. An efficient solution to this problem
is of interest for a large number of applications including
progressive transmission, point-based multiresolution repre-
sentation and implicit surface rendering, etc. The method
may further be used for the efficient uniform or feature-
sensitive simplification of both images and 3D surfaces in
triangulated, implicit or point cloud form. In the case of sur-
faces in point cloud or implicit form, this is achieved without
the need for any prior surface reconstruction.

Eldar et al.1 introduce an efficient uniform irregular “far-
thest point” (image) sampling strategy featuring a high data
acquisition rate, excellent anti-aliasing properties and an ele-
gant relationship to the Voronoi diagram5 concept. Similar to
other point sampling techniques, however, Eldar et al.1 far-
thest point approach is restricted to planar domains and does
not extend to the case of non-uniform sampling. We propose
an alternative farthest point technique which incrementally
constructs discrete Voronoi diagrams across planar domains
or higher dimensional surfaces with the help of Fast March-
ing methods2, 3, 6. This novel approach yields a very efficient
implementation with the resulting Voronoi diagrams remain-

ing tractable even when modelling a non-uniform metric on
surfaces in point cloud or implicit form and without the need
for any prior surface reconstruction.

We briefly discuss the relevant farthest point sampling
and Fast Marching concepts, followed by our farthest point
sampling algorithm and brief examples for the processing
of images and triangulated surfaces. A companion technical
report4 provides details regarding the FastFPS algorithm for
point clouds and implicit surfaces.

2. Previous Work

2.1. Farthest point sampling

Farthest point sampling is based on the idea of repeatedly
placing the next sample point in the middle of the least-
known area of the sampling domain. In the following, we
summarise the reasoning underlying this approach presented
in Eldar et al.1

Starting with the uniform case, the authors consider the
case of an image representing a continuous stochastic pro-
cess featuring constant first and second order central mo-
ments with the third central moment, i.e., the covariance,
decreasing exponentially with spatial distance. This assump-
tion of stationary first and second order central moments
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leads to the result that the expected mean square (reconstruc-
tion) error, ε2, depends on the location of the N +1th sample
only

ε2(p0, . . . , pN−1) =
∫ ∫

σ2 −UT R−1U dxdy (1)

where (covariance matrix)

Ri j = σ2e−λ
√

(xi−x j)2+(yi−y j)2

and (variance matrix)

Ui = σ2e−λ
√

(xi−x)2+(yi−y)2

for all 0≤ i, j ≤N−1. Since stationarity implies that the im-
age’s statistical properties are spatially invariant and given
that point correlations decrease with distance, uniformly
choosing the N + 1th sample point to be that point which
is farthest away from the current set of sample points there-
fore represents the optimal sampling approach within this
framework.

This sampling strategy is intimately linked with the incre-
mental construction of a Voronoi diagram over the image do-
main. To see this, note that the point farthest away from the
current set of sample sites, S, is represented by the centre of
the largest circle empty of any site si ∈ S. Eldar et al.1 show
that in the case of farthest point sample sets, the centre of
such a circle is given by a vertex of the bounded Voronoi di-
agram of S, BVD(S). Thus, incremental (bounded) Voronoi
diagram construction provides farthest point sample points
progressively.

From visual inspection of images it is clear that usu-
ally not only the sample covariances but also the sample
means and variances vary spatially across an image. When
allowing for this more general variability, the design of a
non-uniform, adaptive sampling strategy is required. In this
context, the assumption of sample point covariances de-
creasing, exponentially or otherwise, with point distance re-
mains valid. However, since continuous Voronoi diagrams
in non-uniform metrics may lose favourable properties such
as connected and convex regions5, Eldar et al.1 are led to
conclude that finding the farthest point in such a diagram
is impractical. They opt for a work-around involving the
application-dependent weighting of the vertices in the uni-
form Euclidean Voronoi diagram instead. In this paper, we
put forward a Fast Marching-based farthest point sampling
approach which works equally well in both the uniform and
adaptive case. Furthermore, unlike previous point sampling
techniques, it is not limited to 2D domains but extends to
higher dimensional surfaces in triangulated, point cloud or
implicit form without any loss in efficiency or the need for
prior surface reconstruction.

2.2. Fast Marching

We pose the problem of computing the distance map across
a sampling domain in the form of a specific boundary

value partial differential equation and briefly outline the Fast
Marching approach towards the very efficient approximation
of its solution.

For simplicity, take the case of an interface propagating
with speed function F(x,y) away from a source (boundary)
point (u,v) across a planar Euclidean domain. When inter-
ested in the time of arrival, T (x,y), of the interface at grid
point (x,y), i.e., the distance map T given source point (u,v),
the relationship between the magnitude of the distance map’s
gradient and the given weight F(x,y) at each point can be ex-
pressed as the following boundary value formulation

|∇T (x,y)| = F(x,y) (2)

with boundary condition T (u,v) = 0. That is, the distance
map gradient is proportional to the weight function. The
problem of determining a weighted distance map has there-
fore been transformed into the problem of solving a particu-
lar type of Hamilton-Jacobi partial differential equation, the
Eikonal equation. For F(x,y) > 0, this type of equation can
be solved for T (x,y) using Fast Marching.

Since the Eikonal equation is well-known to become non-
differentiable through the development of corners and cusps
during propagation6, the Fast Marching method considers
only upwind, entropy-satisfying finite difference approxima-
tions to the equation. For such first and second order approx-
imations, see Sethian6.
The use of an upwind difference approximation implies that
information propagates from smaller to larger values of T
only, i.e., a grid point’s arrival time gets updated by neigh-
bouring points with smaller T values only. This monotonic-
ity property allows for the maintenance of a narrow band of
candidate points around the front representing its outward
motion. The property can further be exploited for the design
of a simple and efficient algorithm by freezing the T val-
ues of existing points and subsequently inserting neighbour-
ing ones into the narrow band thereby marching the band
forward. Arrangement of the band elements in a min-heap
leads to an O(N logN) implementation, with N representing
the number of grid points.

The algorithm can relatively easily be extended to the case
of surfaces in triangulated, point cloud or implicit form. For
the case of triangulated domains, suitable upwind approx-
imations are presented in Sethian6. As regards surfaces in
point cloud or implicit surface form, Mémoli and Sapiro2, 3

present an augmentation of the Fast Marching method for
the computation of distance functions across point clouds or
implicit surfaces without the need for any prior surface re-
construction. This technique is exploited in Moenning and
Dodgson4 for the extension of the FastFPS principle to sur-
faces in point cloud or implicit form.

3. Fast Marching farthest point sampling

For simplicity, we first consider our FastFPS algorithm for a
uniform metric and a planar domain.
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FastFPS for planar domains Starting with an initial sample
point set S, we compute BVD(S) by simultaneously prop-
agating fronts from each of the initial sample points out-
wards. This process is equivalent to the computation of the
Euclidean distance map across the domain given S and is
achieved by solving the Eikonal equation with F(x,y) = 1,
for all x, y, and using a single min-heap. The vertices of
BVD(S) are given by those grid points entered by three or
more propagation waves (or two for points on the domain
boundary) and are therefore obtained as a by-product of the
propagation process. The Voronoi vertices’ arrival times are
inserted into a max-heap data structure. The algorithm then
proceeds by extracting the root from the max-heap, the grid
location of which represents the location of the next farthest
point sample. The sample is inserted into BVD(S) by reset-
ting its arrival time to zero and propagating a front away
from it. The front will continue propagating until it hits grid
points featuring lower arrival times and thus belonging to
a neighbouring Voronoi cell. The T values of updated grid
points are updated correspondingly in the min-heap using
back pointers. New and obsolete Voronoi vertices are in-
serted or removed from the max-heap respectively. The algo-
rithm continues extracting the root from the max-heap until
it is empty or the sample point budget has been exhausted.
By allowing F(x,y) to vary with any weights associated with
points in the domain, this algorithm is easily extended to the
case of adaptive sampling. The algorithm can thus be sum-
marised as follows

0) Given an initial sample set S, n = |S| ≥ 2, compute
BVD(S) by propagating fronts with speed F(x,y) from
the sample points outwards using a min-heap and Fast
Marching with a finite difference approximation for pla-
nar domains6. Store the Voronoi vertices’ arrival times in
a max-heap.

1) Extract the root from the max-heap to obtain sn+1. S′ =
S∪{sn+1}. Compute BVD(S′) by propagating a front lo-
cally from sn+1 outwards using the min-heap and Fast
Marching as in 0).

2) Correct the arrival times of updated grid points in the
min-heap. Insert the vertices of the new Voronoi polygon,
V(sn+1,S

′), in the max-heap. Remove obsolete Voronoi
vertices of the neighbours of V(sn+1,S

′) from the max-
heap.

3) If neither the max-heap is empty nor the point budget has
been exhausted, loop from 1).

Extracting the root from, inserting into and removing from
the max-heap with subsequent re-heapifying are O(logM)
operations, where M represents the number of elements
in the heap. M is O(N), N representing the number of
grid points. The updating of existing min-heap entries is
O(1) due to the use of back pointers from the grid to the
heap. The detection of a (bounded) Voronoi cell’s vertices
and boundary is a by-product of the O(N logN) front
propagation. Thus, the algorithm’s worst case running time
is O(N logN).

FastFPS for triangulated domains The algorithm nec-
essarily no longer considers points in an orthogonal grid
but vertices, vi, i = 1,2, . . . ,N, in a triangulated domain.
Front propagation occurs directly on the surface with F
being a positive constant (uniform) or varying with any
cost associated with the vertices (non-uniform). A suitable
monotone and consistent finite difference approximation for
triangulated domains can be found in Sethian6. To allow for
triangulated domains, only steps 0) and 1) of the FastFPS
algorithm need to be modified as follows

0) Given an initial sample set S, n = |S| ≥ 2, compute
BVD(S) by propagating fronts with speed F(vi) from
the sample points outwards using a min-heap and Fast
Marching with a finite difference approximation for trian-
gulated domains. March along the triangles and linearly
interpolate the intersection curve between pairs of dis-
tance maps of different origin across each triangle6. Store
the Voronoi vertices’ arrival times in a max-heap.

1) Extract the root from the max-heap to obtain sn+1. S′ =
S∪{sn+1}. Compute BVD(S′) by propagating a front lo-
cally from sn+1 outwards as in 0). March the triangles
touched by this local update procedure and interpolate
the intersection curves.

Triangle marching and the linear interpolation of the
intersection curves are O(N) processes, N representing
the number of vertices. The remaining operations are as in
FastFPS for planar domains so the overall complexity of
FastFPS for triangulated domains is O(N logN).

Model Model size Sample size Secs.

LENA image (256x256) 30k 1.21

MANDRILL image (348x348) 40k 2.45

PEPPERS image (512x512) 50k 4.24

BUNNY mesh 35947 30k 0.72

DAVID mesh 99455 40k 1.43

DRAGON mesh 184018 50k 3.89

Table 1: Uniform FastFPS sampling times.

4. Application examples

Starting with the application of FastFPS for planar domains
to progressive image sampling, we adaptively sample the
(512x512) Lena image by making F(x,y) vary with a sim-
ilarity measure. More specifically, we transform RGB val-
ues into CIELAB colour space coordinates and impose a
non-uniform speed function in the form of inter-point colour
space distances. Like any other weight function, this similar-
ity measure can be easily incorporated into a FastFPS imple-
mentation provided F(x,y) > 0, for all x,y. See figure 1 for
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Figure 1: The adaptive FastFPS point set (left) captures vi-
tal features very well early on into the sequence and without
the excessive concentration of points near sharp edges pro-
duced by Eldar et al.1 algorithm (right).
Sample size: (a) 0.8% (2k), (b) 1.6% (4k), (c) 6.1% (16k).

the high-quality point sets produced by FastFPS for planar
domains for relatively small sample point budgets.

We apply uniform FastFPS for triangulated domains to the
problem of sampling the “Dragon” object surface for mesh
decimation and/or progressive transmission. The FastFPS
point sets for different budgets are presented in figure 2. The
cluster-free point sets fill the space uniformly and irregularly
thereby suppressing any noticeable aliasing effects and al-
lowing for both high-quality renderings early on into the se-
quence and significantly decimated model sizes. Although a
thorough experimental analysis of execution (and memory)
efficiency will have to be provided elsewhere, table 1 gives
an indication of the algorithm’s speed on a AMD 1.3 Ghz,
256MB, Windows 2000 machine.

5. Conclusions

We presented a new, efficient and easily implementable Fast
Marching-based2, 3, 6 farthest point sampling approach. Its
main benefits are, firstly, that it works equally well in the
uniform and adaptive case. Secondly, FastFPS is applicable
to planar domains and surfaces in triangulated, point cloud
or implicit form. We demonstrated the quality and speed of

Figure 2: Points sets (left) produced by uniform FastFPS for
triangulated domains and the corresponding mesh render-
ings (right).
Sample size: (a) 4.3% (8k), (b) 8.6% (16k), (c) 21.7% (40k)

computation of FastFPS point sets for the generation of ef-
fective sparse image and 3D surface representations.
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