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Abstract. Alexa [1] and Ivrissimtzis et al. [2] have proposed a clas-
sification mechanism for bivariate subdivision schemes. Alexa consid-
ers triangular primal schemes, Ivrissimtzis et al. generalise this both to
quadrilateral and hexagonal meshes and to dual and mixed schemes. I
summarise this classification and then proceed to analyse it in order to
determine which classes of subdivision scheme are likely to contain use-
ful members. My aim is to ascertain whether there are any potentially
useful classes which have not yet been investigated or whether we can
say, with reasonable confidence, that all of the useful classes have already
been considered.
I apply heuristics related to the mappings of element types (vertices, face
centres, and mid-edges) to one another, to the preservation of symme-
tries, to the alignment of meshes at different subdivision levels, and to the
size of the overall subdivision mask. My conclusion is that there are only
a small number of useful classes and that most of these have already been
investigated in terms of linear, stationary subdivision schemes. There is
some space for further work, particularly in the investigation of whether
there are useful ternary linear, stationary subdivision schemes, but it
appears that future advances are more likely to lie elsewhere.

1 Introduction

Alexa [1] and Ivrissimtzis et al. [2] propose a classification of subdivision schemes.
Alexa classifies all triangular primal schemes. Ivrissimtzis et al. extend this both
to quadrilateral and hexagonal base meshes and to dual and mixed schemes (this
terminology is explained later in this section). The extension to quadrilateral
meshes is based on Sloan’s work on 2D lattices [3].

While this classification tells of the existence of many classes of subdivision
scheme, it does not give any indication as to which classes are likely to contain
useful schemes. This paper analyses Ivrissimtzis et al.’s classification with the
intention of determining which classes are likely to contain useful (stationary, lin-
ear) subdivision schemes and which classes are unlikely to contain useful schemes.
I expect that there will be an indeterminate region between those classes which
clearly contain useful schemes and those classes which clearly do not. I assume
that the reader is familiar with subdivision [4].
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Subdivision schemes may be classified in a variety of ways. Ivrissimtzis, Sabin
and I use a hierarchy of detail, where the top level classes encompass many
subdivision schemes, while the lowest level precisely specifies a single scheme.
The hierarchy has the following levels (this is an expanded form of the list given
by Ivrissimtzis et al. [2]).

Base mesh type. This is the base mesh in the regular case. Most subdivision
schemes are based on either a quadrilateral or a triangular mesh. It is also
possible to base a scheme on an hexagonal mesh, this being the only other
regular monohedral tiling of the plane [5], or on one of the semi-regular
tilings of the plane.

Mapping. This concerns how vertices, face centres, and mid-edges map to one
another from one level of subdivision to the next. Face centres and mid-
edges refer to these points in a regular tiling of the plane. If one applies
subdivision to a regular tiling of the plane, the mapping is exact. In the
case of a general mesh in 3D space, we can think of the regular tiling of the
plane as a parameterization of the actual mesh. Ivrissimtzis et al. [2] classify
schemes based on whether vertices map to vertices or to face centres. In this
paper I extend this to consider what elements are mapped to by face centres
and to consider also the mappings of mid-edges.

Arity. This describes how the source grid maps to the subdivided grid in the
regular case. It can be represented either as a scalar, representing the ratio
of the lengths of edges in the source and subdivided grids, or as an ordered
pair, (n,m), giving the relative position, in the coordinate system of the
subdivided grid, of one source vertex with respect to an adjacent source
vertex (see Fig. 1); in the case of the hexagonal grid, of the position of one
source face centre with respect to an adjacent one (see Fig. 2). Without loss
of generality we can take n > 0 and 0 ≤ m ≤ n. Thus (2, 0) represents
binary subdivision (e.g. Catmull-Clark [6], Doo-Sabin [7], Loop [8]), while
(1, 1) represents the

√
2 class for quadrilateral grids (e.g. simplest [9], Peters-

Shiue [10], Velho [11, 12]) and the
√

3 class for triangular and hexagonal
grids (e.g. Kobbelt’s

√
3 [13], hexagon-by-three [14]). Examples are shown

in Fig. 3.

Footprint. Having chosen values for the above three, the next level is to specify
which new vertices are affected by a given source vertex in the regular case.
This corresponds to specifying which coefficients in the subdivision mask are
non-zero. A larger footprint gives greater freedom in choice of coefficients but
also greater computation and increased difficulties in handling extraordinary
points. Of the well-known published schemes, simplest [9] has the smallest
footprint (4 vertices) while Catmull-Clark [6], butterfly [15], and Kobbelt [16]
have the largest (25 vertices in each case). Amongst more recent schemes,
ternary Loop [17] has 61 non-zero coefficients and interpolating ternary tri-
angular [18] has up to 85. I note that the terminology is not consistent in the
literature, so it is worth saying that I am using Sabin’s definition of the term
mask [19] where the mask shows the contributions made to each new vertex



Fig. 1. Open circles are source vertices; black dots are subdivided vertices. The solid
lines are the source mesh; the dashed lines are the subdivided mesh. At left is a visu-
alisation of QP (1, 1) subdivision as we usually think of it: a new vertex is introduced
at the centre of each quadrilateral, the old vertices are adjusted, and the new grid is
constructed as shown. At right is an equivalent visualisation, this time with the subdi-
vided grid aligned horizontally and vertically. If the edges of the subdivided mesh are
assigned unit length then this is the coordinate system used by Ivrissimtzis et al. [2]
for quadrilateral meshes, which is used throughout this paper.

by a given old vertex, c.f. the stencils where a stencil shows the contributions
made by each old vertex to a given new vertex.

Mask coefficients. The next step is to decide what values the coefficients
should have. For B-spline based and box-spline based schemes, there is no
freedom beyond choosing the particular spline basis, as the coefficients must
be derived from the spline on which they are based. Other schemes have
more freedom (e.g. butterfly [15], Kobbelt [16], interpolating ternary tri-
angular [18]). Amongst other things, the choice of coefficients determines
whether the scheme is interpolating or approximating. Interpolating schemes
(e.g. butterfly [15]) are those where the limit surface is constrained to pass
through the source vertices. Approximating schemes (e.g. Loop [8]) do not
have this constraint.

Extraordinary cases, boundaries, and creases. The final step is to handle
the extraordinary cases. This is the step which requires a significant amount
of careful thought and analysis. Some schemes have more than one proposed
method for handling extraordinary cases. For example, the schemes based
on the bivariate quadratic and cubic B-splines are commonly known as Doo-
Sabin and Catmull-Clark subdivision respectively but, in fact, each of them
has two variant mechanisms for handling extraordinary cases: one proposed
by Catmull and Clark [6] and one proposed by Doo and Sabin [7]. Boundaries
of the mesh must also be handled as special cases as must creases [4] in
the mesh which are internal edges along which a designer wants reduced
continuity.

Alexa [1] and Ivrissimtzis et al. [2] consider the top three levels of this hier-
archy. This paper analyses that classification in order to ascertain which classes
are likely to contain useful schemes.
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Fig. 2. The coordinate systems of the three mesh types. The quadrilateral mesh has
the conventional coordinate system. Each edge is of unit length. The triangular mesh
has axes at an angle π/3 to one another, with all edges of unit length. The hexagonal
mesh is more complex. As with the triangular mesh, the axes are at an angle π/3 to
one another, but it is the face centres which are at integer coordinates; edges are of
length one-third, and vertices are at
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)
,
(
x+ 2
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, y + 2

3

)
, x, y ∈ ZZ. This

makes the hexagonal mesh a precise dual of the triangular mesh, as illustrated in the
figure. See Appendix A for more on this coordinate system.

2 Summary of the Classification Notation

Ivrissimtzis et al. [2] use notation of the form AB(n,m), where A is the base
mesh type, B the mapping, and (n,m) the arity. Occasionally it is convenient
to use A(n,m) as a shorthand for all classes with the same base mesh type and
arity. The coordinate systems are illustrated in Fig. 2 and example classes are
shown in Fig. 3.

A can be Q (quadrilateral), T (triangular) or H (hexagonal). The right-
triangle based schemes (e.g. Velho’s 4-8 scheme [11, 12]) are regarded as Q
schemes, because the vertices lie on the quadrilateral grid in the regular case.
The right-triangle tiling, its dual (the octagon-square semi-regular tiling), and
other semi-regular tilings, could be considered as primitive base mesh types in
their own right, but Ivrissimtzis et al. [2] limit the classification to the three
regular base tilings.

B can be P (primal), D (dual) or M (mixed) where primal means that all
vertices map to vertices, dual that all vertices map to face centres, and mixed that
vertices map to a combination of vertices and face centres. This classification as
‘primal’ and ‘dual’ arises from the (2, 0) classes for which the terminology is well
known [20] and where it is related to the concept of the dual graph. Sabin [19]
points out that the classification as ‘primal’ and ‘dual’ is not necessarily par-
ticularly satisfactory for the general case. For example, in Q(2, 0) classes it is
related to the concept of face-splitting (primal) or vertex-splitting (dual), but
this face- or vertex-splitting relationship fails for most other arities. In particu-
lar, Oswald and Schröder note that it fails for (1, 1) classes [21]. The limitations
of this classification are explored further in Sect. 3.3.
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Fig. 3. Some example classes. Open circles are source vertices; black dots are subdi-
vided vertices. The solid lines are the source mesh; the dashed lines are the subdivided
mesh. Note how the (n,m) notation gives the coordinates, in the coordinate system
of the subdivided grid, of an adjacent source vertex with respect to an arbitrary ori-
gin source vertex; to illustrate this, the top line of examples has an origin and the
appropriate adjacent source vertex explicitly labelled with their coordinates.

(n,m) is the arity, as described in Sect. 1. There are certain quirks in the
specification of arity for the TM and HM (triangular mixed and hexagonal
mixed) classes, which I will gloss over here as they have no impact on the con-
clusions of this paper (for details see Ivrissimtzis et al. [2]). The term arity can
refer to either (n,m) or to the length of the vector, which is

√
n2 +m2 for Q

and
√

(n+m/2)2 + (
√

3n/2)2 for T and H.

The classes of arity (1, 0) represent schemes which do not subdivide. These
can be identity schemes, where the mesh does not change at all, or other point-
processing schemes comparable with filters used in image processing. The sim-
plest application of these would be mesh smoothing.

There is an interesting case with the lowest possible arity class considered by
Ivrissimtzis et al. [2], which is the class of QM

(
1
2 ,

1
2

)
schemes. The arity (length

of the (n,m) vector) is 1√
2
, which is less than unity, and therefore this class

represents decimation schemes, rather than subdivision schemes.

3 Heuristic Analysis

This classification allows for a large number of potential subdivision schemes.
This paper asks which of these classes are likely to contain useful schemes and
thus reward further investigation and, conversely, which are likely to have un-



resolvable problems. To facilitate a partition into usable and unusable classes,
I sequentially introduce heuristics, each providing more stringent requirements
on what is meant by “usable”.

An heuristic is a rule of thumb, a guideline which helps us to consider only
the useful alternatives. In subdivision, one early heuristic appears to have been
“only binary schemes are worth considering.” This apparant heuristic has been
seriously challenged by the discovery and development of

√
2 [9, 11, 12, 22, 23],√

3 [13, 24] and ternary [17, 25, 18] schemes. They have not, however, completely
invalidated it because all commercial systems are based on binary schemes. An
up-to-date version of this example heuristic would therefore seem to be some-
thing like “only schemes based on Catmull-Clark or Loop are worth considering
in a commercial context.” As with all heuristics, it is possible to argue both for
and against it.

This paper sets out a number of heuristics which are designed to reduce the
enormous number of potential schemes which are allowed for by the classification
mechanism. None of the heuristics is a hard and fast rule and not all of them
have a solid mathematical justification. Nevertheless, I believe that they are rules
of which all practitioners of subdivision become aware, whether consciously or
not. It may well be that, as with the “only binary schemes are useful” heuristic,
some of these heuristics will prove to be false guides. The commentary following
each heuristic therefore incorporates discussion of those situations in which the
heuristic appears to be a less than perfect guide.

3.1 Heuristics Implicit in Ivrissimtzis et al.’s Classification

The first two heuristics are implicit in Ivrissimtzis et al.’s [2] classification sys-
tem. The classification is thus already making assumptions about which types
of subdivision schemes are likely to prove useful. For comparison, Han has pro-
duced a much more restricted classification system for subdivision schemes [26]
in which he implicitly assumes that Heuristics 1–6 are true.

Heuristic 1. Only regular monohedral tilings of the plane are useful as base
meshes.

This limits the base mesh in the regular case to being quadrilateral, triangular,
or hexagonal, with the individual polygons being regular. There are subdivision
schemes which appear to be based on a right-triangle mesh [11, 12] but these
can be treated as Q schemes, because the vertices lie on the quadrilateral grid
in the regular case; the right-triangle concept simply serves to make the ex-
planation and implementation of the scheme somewhat easier in practice. The
right-triangle tiling, its dual (the octagon-square semi-regular tiling), and other
semi-regular tilings, could be considered as primitive base mesh types in their
own right. In addition to semi-regular tilings it may be possible to create a sub-
division scheme based on an aperiodic tiling, such as a Penrose tiling [27]. In any
semi-regular or aperiodic case there would seem to be some difficulty in speci-
fying the base mesh for an object and in extending the subdivision scheme to



handle extraordinary cases, boundaries, and creases. Nevertheless, Ivrissimtzis,
Claes, and I undertook some preliminary work on octagon-square subdivision
schemes in 2003. It was clear from this that some sort of octagon-square subdi-
vision scheme is possible, although the above difficulties would have to be faced;
in particular it is difficult to see how to handle extraordinary faces with an odd
number of edges. It was also clear that the vertices do not lie on one of the three
regular meshes, unlike the right-triangle mesh whose vertices lie on the quadri-
lateral mesh. There may be some advantage in investigating such schemes but
they seem to pose immense difficulties. Furthermore, the classification mecha-
nism does not admit such schemes. I do not consider them further.

Heuristic 2. Every vertex at one level of subdivision must map to either a ver-
tex or a face centre at the next level.

Ivrissimtzis et al.’s [2] classification assumes this. The second letter in the clas-
sification indicates whether the mapping is to vertices (P ), face centres (D) or
a mixture (M). The initial motivation for this was from consideration of primal
and dual binary schemes which have either a P or D behaviour. I conjecture
that it would be possible to construct a subdivision scheme where vertices at
one level map to some feature other than a vertex or face centre at the next
level, but that it is likely that such a scheme would not prove useful because,
as described under Heuristic 3 below, it may well produce an infinite number of
possible limit surfaces for the same base mesh and, as described under Heuris-
tic 4 below, it would definitely not maintain the rotational symmetries of the
mesh. This conjecture has not been tested but, as with Heuristic 1, there seem
to be great difficulties with such schemes and, furthermore, the classification
mechanism does not admit such schemes. I do not consider them further.

3.2 Heuristics from the Need for a Single Limit Surface

The next two heuristics are based on the desire for a subdivision schemes to
produce a single deterministic limit surface, rather than an infinite number of
possible limit surfaces. This requires that the limit surface depend solely on
the positions and connectivity of the initial base mesh, not on any arbitrary
labelling of vertices. These two heuristics exclude those classes which require
such an arbitrary labelling.

Heuristic 3. All vertices at one level of subdivision must map to the same new
element type at the next level.

The term element refers to a vertex, face centre, or mid-edge. It is reasonable to
require all vertices to be treated identically under refinement because failure to
adhere to this heuristic can lead to there being multiple possible limit surfaces
for a single base mesh. In these cases, the limit surface will, in general, depend
on which particular vertices map to vertices and which do not. This decision
must be made at every subdivision step (see Fig. 4) and therefore there is a
potentially infinite number of different, equally valid, limit surfaces for any base



Fig. 4. An example of the arbitrary choices which have to be made in a mixed subdi-
vision schemes. This is QM

(
3
2
, 1

2

)
with the rotation direction alternating on alternate

subdivision steps. At the first level of subdivision, half of the vertices map to vertices
and the other half map to face centres. At the next level of subdivision half of those
vertices map to face centres, and so on. In the limit, at most one of the original ver-
tices will map to a vertex and the choice of this original vertex is arbitrary. There
are at least as many limit surfaces as there are original vertices. The mappings for
this subdivision class are: v → v or f (half of the vertices will map to vertices, the
other half to face centres), f → e, e → x. In the limit, all original vertices (but one)
map to no feature at all in the limit surface as they all follow the mapping sequence
v→ v→ · · · → v→ f→ e→ x→ x→ · · ·

mesh. In the case of a finite base mesh, one vertex will be chosen as the origin
and all the other vertices will eventually map to no element. There will thus
be as many possible limit surfaces as there are vertices in the base mesh. The
particular limit surface which is arrived at thus depends on something more than
just the location and connectivity of the base mesh’s vertices: this is undesirable.
In addition, it is difficult to see how such schemes could be extended to handle
extraordinary cases, boundaries, and creases.

This heuristic eliminates all mixed classes because, in mixed classes, some
vertices map to vertices and some map to face centres. Therefore all TM , QM
and HM classes are unlikely to produce useful subdivision methods.

It might be sensible to extend this heuristic to say that all face centres must
map to the same element type and that all mid-edges must map to the same
element type. This would eliminate most of the TD classes (all except those
for which n + 2m mod 6 = 0, see Table 3 and Appendix A for the detailed
calculations of these restrictions). However, while I am convinced that this ex-
tension to face centres and mid-edges is sensible, I find it difficult to see how the
above argument regarding multiple limit surfaces can be extended to these cases
and, furthermore, all classes which would be excluded by such an extension are
excluded by the next heuristic anyway.



Heuristic 4. All rotational symmetries should be maintained under refinement.

The requirement is that centres of k-fold rotational symmetry (k-centres) at one
refinement level have k-fold rotational symmetry at the next level. k-centres may,
of course, become centres of higher rotational symmetry provided that the higher
symmetry preserves k-fold symmetry. This heuristic seems reasonable because
a loss of rotational symmetry leads to multiple possible limit surfaces from the
same source mesh. Consider, for example, a vertex in a triangular mesh (6-fold
rotational symmetry) which maps to a face centre (3-fold rotational symmetry)
under subdivision. There are two possible ways in which this could happen. In
simple terms, the vertex maps either to an up-pointing triangle or to a down-
pointing triangle. The decision as to which vertices map in which way must
be taken at each subdivision step. Even a finite triangular base mesh, with no
extraordinary vertices, will thus have infinitely many possible limit surfaces. As
with Heuristic 3, the limit surface thus depends on something other than just
the location of vertices and the connectivity of the mesh. This is undesirable.

Failing to preserve rotational symmetry also makes it difficult to extend a
scheme to handle irregular cases. A particular example of this is considered
by Dodgson et al. [28] where the TD(1, 1) class is explored and a particular
TD(1, 1) scheme demonstrated; both the particular scheme and the class as a
whole are shown to have severe problems. I conjecture that similar problems
with irregular cases will arise in any scheme which fails to preserve rotational
symmetry. A proof of this conjecture is beyond the scope of this paper because
the “multiple limit surface” argument, above, is sufficient justification for this
heuristic.

Ivrissimtzis et al. [2] suggest that symmetry considerations would be an al-
ternative way to approach the classification problem and it is clear that symme-
try considerations are important in subdivision. Han explicitly uses symmetry
considerations in his alternative classification mechanism for QP and TP sub-
division schemes [26].

The centres of rotational symmetry are the vertices, face centres, and mid-
edges of the lattice. I will denote these elements as v, f, and e respectively. The
rotational symmetry of each element is shown in Table 1(a).

I use → to indicate a mapping of an element from one level of refinement to
the next and, in particular, k → k′ to indicate a mapping from k-fold rotational
symmetry to k′-fold rotational symmetry. Under this heuristic, allowable sym-
metry mappings between values of k and k′ are, for Q, 2→ 2, 4→ 4, and 2→ 4;
for T and H, 2 → 2, 3 → 3, 6 → 6, 2 → 6, and 3 → 6. Note that 2 → 3 is not
allowed because a 3-centre is not also a 2-centre. The mappings in Table 1(b)
are thus the only ones which are permitted.

From this we see that triangular dual (TD) classes are not allowed because
they map vertices to face centres. Alexa’s concentration on the primal classes
(TP , v → v) for triangular subdivision is therefore vindicated as neither dual
nor mixed schemes are useful in the triangular case.



Table 1. (a) The rotational symmetries of the different elements. (b) The allowable
mappings under the restrictions of Heuristic 4.

(a) (b)

Element Q T H

vertex (v) 4 6 3
face centre (f) 4 3 6

mid-edge (e) 2 2 2

Q

v→ v
v→ f

f→ v
f→ f

e→ v
e→ f
e→ e

T

v→ v

f→ v
f→ f

e→ v

e→ e

H

v→ v
v→ f

f→ f

e→ f
e→ e

We can also see that any hexagonal scheme which maps face centres to ver-
tices is not allowed, which excludes some of the hexagonal primal HP classes
(those for which (n−m) mod 3 = 0, see Table 4). Thus, of the hexagonal classes,
only HD classes and a subset of HP classes are considered useful.

For triangular classes, the only cases in which edges do not map to an ap-
propriate element are already excluded by considering those cases where vertices
or face centres do not map to an appropriate element. Therefore it is a moot
point whether we need consider the mapping of the rotational symmetries of
mid-edges as they are never called into play as a criterion for exclusion. For
hexagonal classes, it is possible for an HP class to have v→ v and f→ v but to
have mid-edges mapping to points with no rotational symmetry (see Table 4). I
conjecture that these should also be excluded.

3.3 The Limitations of the Primal/Dual Notation

Details of how the above mappings are calculated can be found in Tables 2–4 and
Appendix A. The fact that the calculations for HD and TP and for HP and TD
are not exact duals of one another shows up a subtle bias in the classification.
The classification is vertex-centric: it explicitly tells us whether a vertex maps to
a vertex or a face centre. Arguably of equal significance is whether a face centre
maps to a vertex or a face centre. Fortunately this information can be derived
directly from the notation. There are four cases:

vv vertex preserving v→ v, f→ v
ff face preserving v→ f, f→ f
vf preserves both v→ v, f→ f
fv preserves neither v→ f, f→ v

The notation, ab, at left above is shorthand for v → a, f → b. This provides a
more explicit representation of the mappings which occur than does the simple
P and D labelling used by Ivrissimtzis et al. [2]. Note that fv is something of a



Table 2. Calculation of the vfe coding for the quadrilateral QP and QD classes. Details
of the derivation of these formulæ can be found in Appendix A.

QP (n,m) ⇒ v→ v
(n−m) mod 2 = 0 ⇒ f→ v
(n−m) mod 2 = 1 ⇒ f→ f

n mod 2 = m mod 2 = 0 ⇒ e→ v
n mod 2 = m mod 2 = 1 ⇒ e→ f
n mod 2 6= m mod 2 ⇒ e→ e

Possible scheme types are: vvv, vvf, and vfe.

QD(n,m) ⇒ v→ f
(n−m) mod 2 = 0 ⇒ f→ f
(n−m) mod 2 = 1 ⇒ f→ v

n mod 2 = m mod 2 = 0 ⇒ e→ f
n mod 2 = m mod 2 = 1 ⇒ e→ v
n mod 2 6= m mod 2 ⇒ e→ e

Possible scheme types are: fff, ffv, and fve.

special case because a subdivision scheme which is of type fv is of type vf if one
considers two steps of subdivision.

Heuristic 4 restricts us to eight useful classes of subdivision scheme. A Q
scheme can be any of vv, ff, vf, or fv; while a T scheme can only be vv or vf; and
an H scheme can only be ff or vf.

In addition to vertices and face centres, the mappings of mid-edges can also be
considered, for completeness. Tables 2–4 show how the mappings can be derived
directly from the notation. We see that there are a limited set of valid mappings.
I use the notation vfe → abc to indicate v → a, f → b, and e → c, extending
the notation above to include edge mappings. Where context is clear I use just
abc to indicate the same thing. Note that TD classes allow the possibility that
an edge can map to a point with no rotational symmetry (indicated by x) and
that half of the face centres can map to face centres while the other half map

to vertices (indicated by f
v ). These possibilities are a consequence of allowing

the v→ f mapping which reduces a 6-centre to a 3-centre, and provides further
justification for Heuristic 4. A similar observation about edges mapping to points
with no rotational symmetry can be made about some of the HP classes.

Fig. 5 illustrates the low arity classes. It shows at least one class of each of
the mapping types for QP , QD and TP .
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Fig. 5. Illustrations of the low arity QP , QD, TP and H classes. Open circles are
source vertices; black dots are subdivided vertices. The solid lines are the source mesh;
the dashed lines are the subdivided mesh. The (2, 1) schemes have been included for
completeness, although excluded by Heuristic 5.



Table 3. Calculation of the vfe coding for the triangular TP and TD classes. Details
of the derivation of these formulæ can be found in Appendix A.

TP (n,m) ⇒ v→ v
(n−m) mod 3 = 0 ⇒ f→ v
otherwise ⇒ f→ f

n mod 2 = m mod 2 = 0 ⇒ e→ v
otherwise ⇒ e→ e

Possible scheme types are: vvv, vve, vfv, and vfe.

TD(n,m) ⇒ v→ f
(n−m) mod 3 = 0 ⇒ f→ f

otherwise ⇒ f→ f
v

n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ x

Possible scheme types are: fff, ffx, f f
v f, and f f

v x.

3.4 Heuristics Based on Observation of Current Practice

While the previous two heuristics are based on a desire to have a single determin-
istic limit surface, the following heuristics are much less clear-cut and I therefore
address their limitations as well as their merits in the discussion.

Heuristic 5. Allow only schemes which align the mesh at one level of refinement
with the mesh at some higher level of refinement.

This heuristic was explored by Alexa [1] for the TP classes. It says that a scheme
needs to produce a mesh which is in the same rotational orientation as the base
mesh after a finite number of steps. For all three types of base mesh, this heuristic
permits only (n, 0) and (n, n) classes. Alexa [1] proves this for T classes, so it is
true for H classes by geometric duality. It is also true for Q classes because it is
true by inspection for (n, 0) and, for (n,m), m > 0 it requires:

tan
2π

p
∈ Q, p ∈ ZZ+, 0 <

2π

p
≤ π

4

whose only solution [29] is p = 8 and therefore m = n. In Han’s classification of
TP and QP schemes [26], his symmetry conditions force this heuristic to be true
and his Theorem 2 proves the equivalent of this restriction to (n, 0) and (n, n)
classes.

This heuristic seems reasonable because the base mesh is often constructed
with important linear features of the object aligned with the mesh, so rotating
away from this alignment is a bad thing. Of course, the (n, n) classes also rotate
away from the desired alignment, but they do it symmetrically and, after two
subdivision steps, they are realigned.



Table 4. Calculation of the vfe coding for the hexagonal HP and HD classes. Details
of the derivation of these formulæ can be found in Appendix A.

HP (n,m) ⇒ v→ v
v5 → v4 ⇒ c = 1
v5 → v5 ⇒ c = 2

(n−m) mod 3 = 0 ⇒ f→ v
(n−m) mod 3 = 3− c ⇒ f→ f
(n−m) mod 3 = c ⇒ HM, not HP

(n−m) mod 3 = 0 and
n mod 2 = m mod 2 = 0 ⇒ e→ v
otherwise ⇒ e→ x

(n−m) mod 3 = 3− c and
n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ e

Possible scheme types are: vvv, vvx, vff, and vfe.

HD(n,m) ⇒ v→ f

(n−m) mod 3 = 0 ⇒ f→ f
otherwise ⇒ HM, not HD

n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ e

Possible scheme types are: fff and ffe.

However, it is arguable that this heuristic is not strictly necessary. In par-
ticular, it is always possible to get the subdivision meshes to realign after every
two subdivision steps by performing the rotation one way on even numbered
steps and the opposite way on odd numbered steps (an example can be seen
in Fig. 4). One way to check the validity of the heuristic would be to perform
an investigation (similar to that undertaken for TD(1, 1) [28]) on either of the
lowest arity classes which are excluded by this heuristic: QP (2, 1) or QD(2, 1).
QP (2, 1) is specifically mentioned by Sloan [3] as useful in the context of numer-
ical integration and Ivrissimtzis et al. [30] have recently undertaken an initial
investigation of QP (2, 1) schemes. While they do produce a valid subdivision
scheme, it is unclear whether it is of practical use.

Heuristic 6. Triangular and quadrilateral schemes are generally useful but hexag-
onal schemes are more limited in their applications.

As mentioned above, it is frequently useful to have important linear features in
the model, such as edges, run along an edge in the base mesh in order to preserve
the linear feature from one level of subdivision to the next. Hexagonal meshes



do not have any straight edges which will run between multiple polygons. This
would seem to limit the applicability of hexagonal schemes because they are not
useful for objects in which such linear features need to be preserved. However,
Claes et al. [14] claim that this is one of the advantages of hexagonal schemes:
that they can be used situations where one does not want linear features to
be preserved. Furthermore, hexagonal dual schemes are useful as the dual of
triangular primal schemes [21].

Heuristic 7. Low arity is preferable to high arity.

Low arity has one key advantage over high arity: it provides a smaller increase in
the number of vertices, which has the desirable effect of allowing for many levels
of resolution close to one another. This is one of Kobbelt’s [13] justifications for
the usefulness of the

√
3 scheme.

Low arity is therefore important. The question then arises, what is the max-
imum arity that is worth considering. There seems to have been no serious
investigation of any class with arity higher than three. For the purposes of this
paper, I consider classes of arity less than four. Four is a somewhat arbitrary
cut-off point and I make only one, weak, claim for it to be the cut-off, rather
than any other value, which is that any arity two (binary) scheme also describes
an arity four scheme by simply taking two subdivision steps of the arity two
scheme. While an arity four scheme offers greater freedom than that offered by
an arity two scheme in terms of choice of coefficients, it is unclear that there
would be significant advantage in providing this greater freedom as it comes at
the cost of reducing the number of levels of resolution available to the users.

Between arity three and arity four lie the T and H classes of arity (2, 2)
(≡
√

12) and the Q classes of arity (3, 1) (≡
√

10) and (3, 2) (≡
√

13). The latter
two classes would be excluded by Heuristic 5 but TP (2, 2) and HD(2, 2) would
not be excluded by that heuristic and may be interesting as they are the lowest
arity classes with mapping types vvv (triangular) and fff (hexagonal).

It is arguable that we should consider nothing higher than arity three; this
would exclude the T and H classes of arity (2, 2) but not the Q(2, 2) classes
(≡
√

8). As intimated the start of Sect. 3, it has been suggested that nothing
higher than arity two is worth considering, which would exclude the ternary
classes (arity (3, 0)) as well the Q(2, 2) classes. Recent work [17, 18, 25] appears
to contradict this extreme view and ternary classes certainly allow a range of
different behaviour to that permitted by binary classes.

In contradiction of this estimate that arity four is some sort of rough cut-
off point, consider the work of Maillot and Stam [31], who provide subdivision
of arbitrary integer arity. Their work, however, simply does a single step of
subdivision, of appropriate arity, to get from the base mesh to the final mesh,
which is not quite in the spirit of subdivision.



Table 5. The low arity classes which may be useful. They are listed in order of in-
creasing arity within the four classifications QP , QD, TP , H. I have included some
which are excluded by later heuristics and the right hand column shows which heuris-
tics would cause them to be excluded. Each class is subdivided into approximating
and interpolating sub-classes. Interpolating versions of dual schemes are difficult to
construct (Heuristic 8) and have therefore been omitted. Sub-classes which have been
investigated in the literature are given their common names and an appropriate cita-
tion. Those which have not, to my knowledge, been investigated are given a descriptive
name in square brackets.

Example Schemes
Class vfe→ Approximating Interpolating Excluded by

QP (1, 1) vvf Velho [11] P&S [10] interpolating
√

2 [22, 23]
QP (2, 0) vvv Catmull-Clark [6] Kobbelt [16]

QP (2, 1) vfe
√

5 [30] [interpolating
√

5] Heuristic 5

QP (2, 2) vvv [
√

8] [interpolating
√

8]
QP (3, 0) vfe [ternary] [interpolating ternary]

QD(1, 1) ffv simplest [9] —
QD(2, 0) fff Doo-Sabin [7] —

QD(2, 1) fve [dual
√

5] — Heuristic 5

QD(2, 2) fff [dual
√

8] —
QD(3, 0) fve [dual ternary] —

TP (1, 1) vve
√

3 [13] interpolatory
√

3 [24]
TP (2, 0) vfv Loop [8] butterfly [15]

TP (2, 1) vfe [
√

7] [interpolating
√

7] Heuristic 5
TP (3, 0) vve Loop ternary [17] interpolating ternary [18]

TP (2, 2) vvv [
√

12] [interpolating
√

12] Heuristic 7(?)

HD(1, 1) ffe hexagon-by-three [14] — Heuristic 6
HP (2, 0) vff hex binary [32](?) [interpolating hex binary] Heuristic 6

HP (2, 1) vfe [hex
√

7] [interpolating hex
√

7] Heuristics 5 and 6
HD(3, 0) ffe [hex ternary] — Heuristic 6

HD(2, 2) fff [hex dual
√

12] — Heuristics 6 and 7(?)

Heuristic 8. Interpolating schemes should be primal.

All classes can accommodate approximating schemes. Any class with the v→ v
mapping can also accommodate interpolating schemes. Classes with the v →
f mapping are also able to produce interpolating schemes but the derivations
required are complicated and it is not clear that the advantages outweigh the
complications.

4 Discussion

Taking all these heuristics into account, the arites which will most reward fur-
ther investigation are (1, 1), (2, 0), (3, 0) and (2, 2), producing twelve subdivision



classes (eightQ, four T ) or eleven if we discount the TP (2, 2) class with the rather
high arity

√
12. Including the equivalent H classes would add three or four classes

to be considered (depending on whether or not one includes HD(2, 2)). Table 5
lists the low arity classes classes, along with the name of the most well-known
published schemes in each class. I have included the (2, 1) classes (excluded by
Heuristic 5) for completeness because it may be that something useful could be
done with them. Fig. 5 shows the layout of a single refinement step for each.
Table 5 can be considered a much extended version of Zorin and Schröder’s [20]
Table 1. It is worth noting that, in addition to the schemes named in Table 5,
Zorin and Schröder [20] have developed a whole family of QP (2, 0) and QD(2, 0)
schemes and Oswald and Schröder [21] a whole family of TP (1, 1) and HD(1, 1)
schemes, all based on up-sampling followed by repeated averaging.

The classification allows description of a wide range of possible subdivision
schemes ranging from those which are currently used through those which may
be useful to those which are almost certainly unusable. The heuristics are a
mechanism for paring away the unusable classes in order to clearly identify the
useful ones. While the classification system is a clean mathematical construct,
the heuristics are less well-defined. The first four heuristics have strong justi-
fications, but the latter four are open to contradiction as demonstrated in the
discussion following each heuristic. Note that Ivrissimtzis et al. [2] implicitely
assume the first two heuristics, while Han [26] assumes the first six. This paper
indicates that, in contrast to both of those assumptions, the first four are rea-
sonably straightforward to justify. One useful next step would be to ascertain
whether there are formal mathematical proofs which either support or shatter
each heuristic.

In addition there are open questions pertaining to classes which are identified
as useful by the heuristics but which have not yet been investigated:

– Is there any advantage to be gained from using a quadrilateral ternary
(Q(3, 0)) scheme? (c.f. Hassan’s [25] univariate ternary scheme and the tri-
angular ternary schemes investigated by Loop [17] and Dodgson et al. [18]).

– Is there any advantage in developing a TP (2, 2) scheme? TP (2, 2) is the
lowest arity triangular class where all three element types map to vertices
(i.e. it is of mapping type vvv). By contrast, the simplest quadrilateral class
with this mapping is the thoroughly investigated QP (2, 0) class. However,
even the simplest, useful TP (2, 2) scheme would require a vertex to have
influence outside its 1-ring, making it difficult to extend to extraordinary
cases, boundaries, and creases, so it may have little, if any, advantage.

– Are there useful interpolating QP (1, 1) and TP (3, 0) schemes? While Ivris-
simtzis et al. [22, 23] have calculated appropriate mask coefficients for the
QP (1, 1) class and Dodgson et al. [18] have undertaken initial work on
TP (3, 0), it remains to perform detailed analysis and to modify the schemes
to handle the extraordinary cases, boundaries, and creases.

It is possible to add further heuristics to the list relating to details further
down the classification hierarchy (Sect. 1). As an example, the next heuristic
which I would propose is the rather obvious:



Heuristic 9. A small footprint is preferable.

A smaller footprint makes for more efficient calculation and is easier to mod-
ify to handle the extraordinary cases. A larger footprint gives more freedom
in choice of coefficients. Loop’s motivation for investigating a ternary version
(TP (3, 0)) [17] of his binary scheme (TP (2, 0)) [8] was that the ternary version
gave more degrees of freedom. As a second example, the higher degree QP (2, 0)
and QD(2, 0) schemes generated by Zorin and Schröder [20] have large footprints
and clearly require more calculation than the lower degree schemes which seems
to be a contra-indication. However, the mechanism of repeated averaging which
they use provides a straightforward way of handling the extraordinary cases at
the expense of losing the extra freedoms gained by having a larger footprint and
at the expense of severe distortion around extraordinary points.

5 Conclusion

By applying heuristics to the classification, I conclude that the most useful lin-
ear, stationary subdivision classes have been investigated and schemes devel-
oped for them. There is some scope for further work, principally in looking at
ternary subdivision [17, 18]. However the future development of new subdivision
schemes seem to lie elsewhere, for example in the development of non-linear or
non-stationary versions of schemes for classes which have already been inves-
tigated [33] or in combining schemes from more than one class into a single
coherent mechanism [10, 34].
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A Details of the Formulæ in Tables 2–4

A.1 Quadrilateral Mesh

In the coordinate system of the subdivided mesh, vertices are at (x, y), x, y ∈ ZZ,
face centres at

(
x+ 1

2 , y + 1
2

)
, x, y ∈ ZZ, and mid-edges at

(
x+ 1

2 , y
)
,
(
x, y + 1

2

)
,

x, y ∈ ZZ.

For the primal classes, QP (n,m), the origin of the source grid is a source
vertex at (0, 0), with an adjacent source vertex at (n,m), n,m ∈ ZZ, 0 < n, 0 ≤
m ≤ n.

A source quadrilateral adjacent to the origin has vertices at (0, 0), (n,m),
(−m,n), and (n−m,n+m). Its face centre is at the arithmetic mean of these
four points:

(
n−m

2 , n+m
2

)
. This coincides with a vertex of the subdivided mesh if

n−m mod 2 = 0. If the alternative, n−m mod 2 = 1, is true then a face centre
maps to a face centre.

The source edge from (0, 0) to (n,m) has its midpoint at
(
n
2 ,

m
2

)
. Therefore,

if n mod 2 = m mod 2 = 0 we have e → v, if n mod 2 = m mod 2 = 1, we have
e→ f, and otherwise we have e→ e.

For the dual classes, QD(n,m), everything shifts by
(

1
2 ,

1
2

)
. The net result is

that we can simply exchange the rôles of face centres and vertices in subdivided
mesh in the QP (n,m) case. Thus, n−m mod 2 = 0⇒ f→ f and n−m mod 2 =
1 ⇒ f → v for the QD case and, likewise, n mod 2 = m mod 2 = 0 ⇒ e → f;
n mod 2 = m mod 2 = 1⇒ e→ v; otherwise e→ e.



A.2 Triangular Mesh

In the coordinate system of the subdivided mesh, vertices are at (x, y), x, y ∈
ZZ, face centres at

(
x+ 1

3 , y + 1
3

)
,
(
x+ 2

3 , y + 2
3

)
, x, y ∈ ZZ, and mid-edges

at
(
x+ 1

2 , y
)
,
(
x, y + 1

2

)
,
(
x+ 1

2 , y + 1
2

)
, x, y ∈ ZZ. Note that there are two

types of face centre: the centres of up-pointing triangles (4) and the centres of
down-pointing triangles (5). The ramifications of this are discussed in detail by
Ivrissimtzis et al. [2]. We will annotate the f notation with a subscript, f4 and
f5, where necessary.

For a TP (n,m) class, without loss of generality, we will take the origin of
the source grid to be a source vertex at (0, 0), with an adjacent source vertex at
(n,m), n,m ∈ ZZ, 0 < n, 0 ≤ m ≤ n, and with an up-pointing triangle to the
left of the line as one moves from (0, 0) to (n,m).

The up-pointing source triangle to the left of this line has source vertices
at (0, 0), (n,m) and (−m,n + m). The face centre of this source triangle is at
the arithmetic mean of these three points:

(
n−m

3 , n+2m
3

)
. Thus we have three

possible mappings:

n+ 2m mod 3 = 0⇒ f4 → v f5 → v
n+ 2m mod 3 = 1⇒ f4 → f4 f5 → f5
n+ 2m mod 3 = 2⇒ f4 → f5 f5 → f4

It is not clear that there is a need to distinguish between up- and down-pointing
triangles and so, in the interests of clarity, Table 3 does not do so. The reader
will note, however, that the most widely used triangular schemes (the TP (2, 0)
schemes Loop [8] and butterfly [15]) map up-pointing triangles to down-pointing
triangles and vice-versa.

The source edge from (0, 0) to (n,m) has its midpoint at
(
n
2 ,

m
2

)
. Therefore,

if n mod 2 = m mod 2 = 0 we have e→ v. In all other cases, e→ e.
For the TD(n,m) classes, the origin of the source grid is a source vertex at

the centre of a face. Its coordinates will thus be:
(
c
3 ,

c
3

)
c ∈ {1, 2} where c = 1

if the face is an up-pointing triangle and c = 2 if the face is a down-pointing
triangle. Ivrissimtzis et al. [2] show that n,m ∈ ZZ in the TD case.

The up-pointing source triangle to the left of the line from the origin to the
adjacent source vertex,

(
n+ c

3 ,m+ c
3

)
, has vertices at

(
c
3 ,

c
3

)
,
(
n+ c

3 ,m+ c
3

)

and
(
−m+ c

3 , n+m+ c
3

)
. The face centre of this source triangle is at the arith-

metic mean of these three points:
(
n−m

3 + c
3 ,

n+2m
3 + c

3

)
. Thus we have three

possible mappings for each of the values of c. For c = 1:

n+ 2m mod 3 = 0⇒ f4 → f4 f5 → f4
n+ 2m mod 3 = 1⇒ f4 → f5 f5 → v
n+ 2m mod 3 = 2⇒ f4 → v f5 → f5

For c = 2:
n+ 2m mod 3 = 0⇒ f4 → f5 f5 → f5
n+ 2m mod 3 = 1⇒ f4 → v f5 → f4
n+ 2m mod 3 = 2⇒ f4 → f4 f5 → v



In the TD cases, unless n+ 2m mod 3 = 0, then half of the face centres map to
face centres and half map to vertices, which is forbidden by Heuristic 3. However,
the situation is rather messy as Heuristic 3 excludes only some of the TD classes,
providing further evidence that there are deeper things going on than revealed
by the simple classification into ‘primal’ and ‘dual’.

The edge from
(
c
3 ,

c
3

)
to
(
n+ c

3 ,m+ c
3

)
has its midpoint at

(
n
2 + c

3 ,
m
2 + c

3

)
.

Therefore, if n mod 2 = m mod 2 = 0 we have e → f. In all other cases, e → x,
i.e. an edge maps either to a face centre or it maps to no element at all.

Only if both n + 2m mod 3 = 0 and n mod 2 = m mod 2 = 0 do we get a
sensible mapping. Combining these two gives the condition n + 2m mod 6 = 0
which is mentioned in the discussion of Heuristic 3.

A.3 Hexagonal Mesh

The hexagonal case is somewhat more involved than the triangular case because,
in the hexagonal case, we can distinguish two different types of vertex. This
means that we must check that both types of vertex map to the same new
element type (face or vertex) in order for the class to be either HD or HP .
Otherwise, the class is HM .

In the coordinate system of the subdivided mesh, face centres are at (x, y),
x, y ∈ ZZ, vertices at

(
x+ 1

3 , y + 1
3

)
,
(
x+ 2

3 , y + 2
3

)
, x, y ∈ ZZ, and mid-

edges at
(
x+ 1

2 , y
)
,
(
x, y + 1

2

)
,
(
x+ 1

2 , y + 1
2

)
, x, y ∈ ZZ. We need to annotate

the v notation in order to distinguish the two types of vertex. Where neces-
sary, vertices at

(
x+ 1

3 , y + 1
3

)
, x, y ∈ ZZ will be denoted v4 and those at(

x+ 2
3 , y + 2

3

)
, x, y ∈ ZZ, v5. v4 is a Y-shaped vertex while v5 is an inverted

Y. The orientation of the triangle is the dual of the configuration of the vertex.

In the hexagonal case, the (n,m) notation does not refer to the distance
between two adjacent vertices but between two vertices of the same type or,
equivalently, between two face centres. This ensures that the hexagonal cases
with classification (n,m) are duals of the triangular cases with classification
(n,m).

For an HD(n,m) class, without loss of generality, we will take the origin of
the source grid to be a source vertex at (0, 0), with the next source vertex of the
same type at (n,m), n,m ∈ ZZ, 0 < n, 0 ≤ m ≤ n, and with the vertex at the
origin being of type v5.

The hexagon has source vertices of type v5 at (0, 0), (n,m), and (−m,n+m),
with intervening vertices of type v4 at

(
2n+m

3 , −n+m
3

)
,
(

2n−2m
3 , 2n+4m

3

)
, and(−n−2m

3 , 2n+m
3

)
. The face centre of this source hexagon is at the arithmetic mean

of these six points:
(
n−m

3 , n+2m
3

)
. From these, we can determine that v5 → f

always (by definition) and that:

n+ 2m mod 3 = 0⇒ v4 → f f→ f
n+ 2m mod 3 = 1⇒ v4 → v5 f→ v4
n+ 2m mod 3 = 2⇒ v4 → v4 f→ v5



Thus, if n+2m mod 3 6= 0, we do not have an HD class because vertices of type
v4 do not map to face centres, and therefore we have an HM class. Thus, for
all HD classes, n+ 2m mod 3 = 0, by definition, and f→ f.

Analysis of the edges show that there are only two possible edge mappings.
If n mod 2 = m mod 2 = 0 we have e→ f. In all other cases, e→ e.

For the HP (n,m) classes let us take, as the origin of the source grid, a
source vertex of type v5 at

(
c
3 ,

c
3

)
c ∈ {1, 2} where the value of c determines

the type of destination vertex (v4 or v5). The next source vertex of type v5 is
at
(
n+ c

3 ,m+ c
3

)
.

The hexagon has source vertices of type v5 at
(
c
3 ,

c
3

)
,
(
n+ c

3 ,m+ c
3

)
, and(

−m+ c
3 , n+m+ c

3

)
, with intervening vertices of type v4 at

(
2n+m+c

3 , −n+m+c
3

)
,(

2n−2m+c
3 , 2n+4m+c

3

)
, and

(−n−2m+c
3 , 2n+m+c

3

)
. The face centre of this source

hexagon is at the arithmetic mean of these six points:
(
n−m+c

3 , n+2m+c
3

)
. By

definition, if c = 1 then v5 → v4 and if c = 2 then v5 → v5. We need to
consider the mappings for v4 and f for each value of c.

For c = 1 :
n+ 2m mod 3 = 0⇒ v4 → v4 f→ v4
n+ 2m mod 3 = 1⇒ v4 → f f→ v5
n+ 2m mod 3 = 2⇒ v4 → v5 f→ f

For c = 2 :
n+ 2m mod 3 = 0⇒ v4 → v5 f→ v5
n+ 2m mod 3 = 1⇒ v4 → v4 f→ f
n+ 2m mod 3 = 2⇒ v4 → f f→ v4

Thus, we have HM classes if n+ 2m mod 3 = c because, in these cases, v5 → v
but v4 → f. For HP schemes we can summarise our results as:

n+ 2m mod 3 = 0 ⇒ v→ v f→ v
n+ 2m mod 3 = 3− c⇒ v→ v f→ f
n+ 2m mod 3 = c ⇒ HM not HP

It now remains to determine the edge mappings. There are three types of
edge to consider, which can be characterised by one example of each. These are
the first three edges round the source hexagon starting at the origin vertex and
they are at:

(
2n+m

6 + c
3 ,
−n+m

6 + c
3

)
,
(

5n+m
6 + c

3 ,
−n+4m

6 + c
3

)
,
(

5n−2m
6 + c

3 ,
2n+7m

6 + c
3

)
.

We thus need to know the values of n and m which place these coordinates
at destinations vertices, face centres or edges, which means that we need to
consider the values of 2n+m mod 6, 5n+m mod 6 and 5n+ 4m mod 6. Some



basic analysis of these shows that the following results hold:

(n−m) mod 3 = 0 and
n mod 2 = m mod 2 = 0 ⇒ e→ v
otherwise ⇒ e→ x

(n−m) mod 3 = 3− c and
n mod 2 = m mod 2 = 0 ⇒ e→ f
otherwise ⇒ e→ e




