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Summary. Most established subdivision schemes have the refined grid at each stage
aligned with the previous one. The

√
3 and

√
2 schemes alternate orientations. This

paper is one of the first detailed studies of a skew scheme in which the axis directions
after refinement do not either lie along or bisect those before. It raises the issue of
how the analysis techniques can be applied in this new context and provides an
example of how they may be thus applied.

1 Introduction

The possibility of a
√

5 scheme for subdivision surfaces was first discussed
in [12]. There, two

√
5 mesh refinement rules for regular quadrilateral meshes

were proposed, classified as QP (2, 1) and QP (1, 2), respectively. These two
regular refinement rules, shown in Fig. 1(left), like the well-known

√
3 re-

finement rule for triangle meshes [17], induce a rotation of the initial mesh.
In particular, the QP (2, 1) refinement induces an anti-clockwise rotation
by arctan( 1

2 ), or equivalently a clockwise rotation by arctan(2), while the
QP (1, 2) induces an anti-clockwise rotation by arctan(2), or equivalently a
clockwise rotation by arctan( 1

2 ).

1.1 Related Work

Skew subdivision schemes, inducing a rotation of the grid at each iteration,
were first introduced as a general class of subdivision schemes in [1].

√
5 refine-

ment was proposed in [23] as a hierarchical sampling method over a regular
grid. In [22], a single step of the

√
5 refinement rule is described as a popular

sampling method for numerical integration of two-dimensional periodic func-
tions. In both applications the nice properties of the

√
5 sampling are due to

fact that the five points corresponding to a square of the old grid (one old
point and four new) all have different x and y coordinates, see Fig. 1(right).
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Fig. 1. Left: QP (2, 1) and QP (1, 2) refinement. Right: The five points correspond-
ing to the same old quad have distinct x and y coordinates.

1.2 Overview

We propose a new subdivision scheme for quadrilateral meshes, based on the√
5 refinement of a regular grid. In Sect. 2 we extend the refinement rule into

irregular meshes, introducing the idea of using half-edges as the main primitive
in the description of a subdivision scheme. In Sect. 3 we study the smoothness
properties the

√
5 subdivision, tune its coefficients, and briefly discuss its

support. We conclude by showing several examples of
√

5 subdivision surfaces.

2
√

5-refinement for Irregular Meshes.

To define a
√

5 subdivision scheme, first, we need an extension of the regular
refinement rules shown in Fig. 1 to cover the irregular case. Despite the fact
that the regular case is already relatively complicated, it turns out that there
is a very simple such extension, based in the correspondence between the
vertices of the new mesh and the vertices and half-edges of the old.

Fig. 2 (left) shows the correspondence between the newly introduced ver-
tices and the half-edges of the old mesh. As, at every step of the process, we
retain the old vertices, we have a correspondence between the vertices of the
new mesh and the vertices and half-edges of the old. A new vertex will be
called vertex-vertex or halfedge-vertex according to this correspondence.

Under the same correspondence, the faces of the new mesh can be described
as 4-tuples of vertices and half-edges of the old mesh. As Fig. 2 (right) shows,
there are two kind of faces on the new mesh. Those corresponding to the faces
of the old mesh, and those corresponding to the half-edges of the old mesh.
Fig. 3 describes the new faces in terms of the old vertices and half-edges.

Notice that descriptions of subdivision processes using half-edges as the
main primitive are not common in the literature. Probably, one reason is that
half-edges, lacking a direct physical interpretation, are considered an unnat-
ural choice, and a second reason is that subdivision schemes requiring the
half-edge description, like the

√
5 scheme proposed here, have not been stud-

ied extensively. Nevertheless, the implementation of a scheme usually involves
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Fig. 2. Left: Every new vertex corresponds to an old half-edge. A solid and a
dashed line connect the new vertex with the beginning and the end, respectively,
of the corresponding old half-edge. Right: The shaded new faces correspond to old
faces, the white new faces correspond to old half-edges.
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Fig. 3. Left: A new face corresponding to an old half-edge described as a 4-tuple
(1,2,3,4) of old vertices and half-edges. Right: A new face corresponding to an old
face described as a 4-tuple of old half-edges.

an implicit half-edge description, given that the most common computer rep-
resentation for meshes is the Half-Edge structure. A generalisation of this idea
is presented in the Appendix at the end of the paper.

3 Stencils for the
√

5-scheme.

The next step towards a definition of a subdivision scheme is to determine
the point-sets of the stencils, that is, the set of old vertices that will be used
for the calculation of the position of the new. A larger point-set, after correct
tuning of the coefficients, gives smoother subdivision surfaces, while a smaller
point set gives smaller support with the influence of each initial vertex better
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Fig. 4. Left: The stencil of the half-edge vertices. Middle: The stencil for the
vertex vertices. Right: The transformation of the 1-ring of the vertex O.

localised. Here, we opt for small stencils and we use the vertices of the face of
a half-edge for the stencil of the corresponding halfedge-vertex. For a vertex-
vertex we use the corresponding old vertex and the members of its 1-ring
neighbourhood, see Fig. 4.

Next we tune the coefficients in the stencils so that the resulting subdivi-
sion surfaces are as smooth as possible.

3.1 Background

Traditionally, there are two major tools for analysing the smoothness prop-
erties of a subdivision surface. The generating functions [9], and the spectral
analysis of the subdivision matrix [8, 3, 20]. Here we use a version of spectral
analysis with a more geometric flavor in the form of eigenpolygons [14, 16].
Although our analysis is elementary it is worth going into some detail, espe-
cially because the study of schemes with complex subdominant eigenvalues is
scattered in the literature of subdivision.

Recall from [7] that the eigenvalues of the n-dimensional circulant matrix

C = circ(c0, c1, . . . , cn−1) =




c0 c1 c2 . . . cn−2 cn−1

cn−1 c0 c1 . . . cn−3 cn−2

. . .
c2 c3 c4 . . . c0 c1
c1 c2 c3 . . . cn−1 c0




(1)

are the values of the generating polynomial

λt = p(ωt), p(z) = c0 + c1z + c2z
2 + · · ·+ cn−1z

n−1, ω = e
2πi
n (2)

for t = 0, 1, . . . , n − 1. The corresponding eigenvectors are given by the rows
of the matrix
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Fig. 5. The four eigenquadrilaterals and the five eigenpentagons.

F =




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)




= (w0,w1,w2, . . . ,wn−1)T . (3)

These eigenvectors can also be seen as vertices of planar regular polygons,
allowing multiple vertices and self-intersections. Fig. 5 shows these eigenpoly-
gons for the cases n = 4, 5, while a detailed study of them can be found in [2].

Every planar polygon, thought of here as an n-tuple of coplanar points,
or equivalently, an n-dimensional complex vector, can be uniquely written
as a linear combination of the n eigenpolygons. A non-planar polygon can
be written as a linear combination of the eigenpolygons, with the additional
property that any two eigenpolygons corresponding to conjugate eigenvalues,
i.e.

wk,wn−k, k = 1, 2, . . . ,
⌊n

2

⌋
(4)

lie on the same plane. The planes where the pairs of eigenpolygons lie can be
computed by solving a linear system, see [5] for the details.

3.2 Analysis Around a Centreface

A very distinct property of the
√

5 scheme is that it is both primal and
dual [12]. That is, one iteration of the subdivision process maps faces to faces
and vertices to vertices. This also means that we have to study the behaviour
of the scheme both around centrefaces and around vertices.

In the study of the behaviour of the scheme around a centreface we as-
sume that all the faces are quadrilateral and thus, at each step, they are
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Fig. 6. The two convex eigenquads after one iteration of the QP (2, 1) subdivision.
The result can be described as multiplication by 2

5
+ i 1

5
and 2

5
− i 1

5
, respectively.

transformed by a circulant matrix of dimension n = 4. By evaluating the
generating polynomial at 1,i,−1,−i we get the system

c0 + c1 + c2 + c3 = 1

c0 + ic1 − c2 − ic3 = λ1

c0 − c1 + c2 − c3 = λ2

c0 − ic1 − c2 + ic3 = λ3 (5)

To find the exact values of λ1, λ3 we notice that the transformation of
the eigenpolygon w1 by one step of the subdivision scheme corresponds to a
multiplication by

z = reiθ =
2

5
+ i

1

5
(6)

where r is the scaling and θ the rotation induced by the scheme. Similarly,
the transformation on w3, which is a copy of w1 with opposite orientation,
corresponds to a multiplication by

z̄ = re−iθ =
2

5
− i1

5
. (7)

But as w1,w3 are eigenpolygons their transformation is also equal to a mul-
tiplication by the corresponding eigenvalue. Thus, we have λ1 = 2

5 + i 1
5 and

λ3 = 2
5 − i 1

5 (see Fig. 6).
In subdivision, the standard requirement for the fourth, fifth, and sixth

eigenvalues is to depend quadratically on the two subdominant eigenval-
ues [21]. Indeed, as the two subdominant eigenvalues represent the trans-
formation within the tangent plane, for nice curvature behaviour we would
expect the dominant eigencomponents outside the tangent plane to shrink
with a speed depending quadratically on the shrinkage of the tangent plane.
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Thus, in our case, a natural choice for the fourth eigenvalue, which by the
third equation of the system (5) is real, would be λ2 = |λ1|2 = |λ3|2 = 1

5 .
That leads to the coefficients

c0 =
5

10
c1 =

3

10
c2 =

1

10
c3 =

1

10
(8)

Notice that, with the above coefficients, points at different distances from the
new point have the same influence on it.

Although in the rest of the paper we use the above coefficients, we have
also examined other possibilities. The coefficients 12

25 ,
8
25 ,

2
25 ,

3
25 , were obtained

as Wachspress coordinates of the point ( 2
5 ,

1
5 ) with respect to the unit square,

see for example [11]. Another alternative is to use the coefficients 9
20 ,

7
20 ,

1
20 ,

3
20 ,

which give λ2 = 0 meaning that any new face corresponding to an old face
is planar, because the only eigencomponent which possibly lies outside the
tangent plane becomes 0. Finally, the coefficients 2

5 ,
2
5 , 0,

1
5 , give λ2 = − 1

5 .
Experimentally, we found that for λ2 = 3

25 we get visual results similar
to those for λ2 = 1

5 . For λ2 = 0 the visual quality deteriorates slightly, while
for λ2 = − 1

5 it is significantly worse, see Fig. 7. The latter shows that the
behaviour of the scheme depends on the actual eigenvalues and not on their
absolute values.

3.3 Analysis Around a Vertex

To study the smoothness properties of a surface around a vertex of valence n
we consider the subdivision matrix

M =




1− β − γ β
n

γ
n

β
n

γ
n

β
n

γ
n . . .

β
n

γ
n

c0 c1 c2 c3 0 0 0 . . . 0 0
c1 c2 c3 c0 0 0 0 . . . 0 0
c0 0 0 c1 c2 c3 0 . . . 0 0
c1 0 0 c2 c3 c0 0 . . . 0 0

c0 c3 0 0 0 0 0 . . . c1 c2
c1 c0 0 0 0 0 0 . . . c2 c3




(9)

acting on the vector

V = (O,P0, Q0, P1, Q1, . . . , Pn−1, Qn−1)T (10)

with O,Pi, Qi as shown in Fig. 4 (right). As the ci’s are given by (8) we have
to optimise for β and γ.

To streamline the computations we calculate the two eigenvalues corre-
sponding to each frequency separately, see [4]. Apart from the obvious eigen-
value 1, we will call elliptic the two eigenvalues corresponding to frequency 0
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Fig. 7. Top left: λ2 = 1
5
, top right: λ2 = 3

25
, bottom left: λ2 = 0, bottom right:

λ2 = − 1
5
.

because they are responsible for the elliptic properties of the scheme, and the
remaining 2n− 2 eigenvalues non-elliptic.

We notice that β, γ seen here as variables, affect only the two elliptic
eigenvalues, see for example [16]. Using this observation we prove in two stages
that our scheme gives C1 surfaces for generic input meshes. First we show that
the largest eigenvalues λ1, λn−1 correspond to frequencies 1 and n − 1, and
all the other non-elliptic eigenvalues have smaller norm. Secondly we compute
β, γ such that the elliptic eigenvalues are equal to |λ1|2 and 0.

The Non-elliptic Eigenvalues

The two non-elliptic eigenvalues corresponding to frequency j are given by
the eigenvalues of the matrix (

λpj c2
λqj c3

)
(11)

where λpj , λ
q
j are the jth eigenvalues of
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Cp = circ(c1, c3, 0, . . . , 0) = circ

(
3

10
,

1

10
, 0, . . . , 0

)
(12)

and

Cq = circ(c2, c0, 0, . . . , 0) = circ

(
1

10
,

5

10
, 0, . . . , 0

)
(13)

respectively. For a geometric interpretation of the above we use a special
decomposition of the two n-gons

P = (P0, P1, . . . , Pn−1), Q = (Q0, Q1, . . . , Qn−1) (14)

as linear combinations of eigenpolygons, coming in pairs Pj,Qj of parallel
polygons with the same frequency j. Then, excluding the influence of O on
them (which is a similarity), the subdivision process transforms them by

(
P′j
Q′j

)
=

(
λpj c2
λqj c3

)(
Pj

Qj

)
(15)

For the details on constructing such a decomposition see [16].
Substituting c2, c3 from (8) and using (2) to calculate λpj , λ

q
j we find the

characteristic polynomial of (11)

∣∣∣∣
3
10 + 1

10ω
j − x 1

10
1
10 + 5

10ω
j 1

10 − x

∣∣∣∣ =
2

100
− 4

100
ωj − (

4

10
+

1

10
ωj)x+ x2 (16)

with roots

λj =

4
10 + 1

10ω
j ±

√
8

100 + 24
100ω

j + 1
100ω

2j

2
(17)

From this we can verify that for every n, the eigenvalues with the largest
norms correspond to j = 1, n− 1.

For the regular case n = 4 in particular, we find that the two subdomi-
nant eigenvalues are 2

5 ± i 1
5 as expected. The fourth and fifth eigenvalues are

3
20 ± i

√
15

20 which means that, even in the regular case, the scheme is not C2.
Nevertheless, as their norm is near to the square of the norm of the subdom-
inant eigenvalues, the quadratic properties of the scheme are acceptable in
practice.

Tuning the Elliptic Eigenvalues

The elliptic eigenvalues of the scheme can be found from the 3× 3 matrix




1− β − γ β γ

c0 c1 + c3 c2

c1 c0 + c3 c2


 =




1− β − γ β γ
5
10

4
10

1
10

3
10

6
10

1
10


 (18)
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see [4]. After adding the second and third columns to the first, and then
subtracting the first row from the second and third, we find the characteristic
polynomial to be

(1− x)

∣∣∣∣
4
10 − β − x 1

10 − γ
6
10 − β 1

10 − γ − x

∣∣∣∣ (19)

and the two elliptic eigenvalues are

β + γ − 1
2 ±

√
(β + γ − 1

2 )2 + 8
100 − 8

10γ

2
(20)

We notice that even after putting the largest elliptic eigenvalue equal to |λ1|2
we still have a degree of freedom left. We use this extra freedom to make the
smallest elliptic eigenvalue equal to zero. This is a good strategy because the
tuning of the eigenvalues is done for the limit after infinitely many subdivision
steps, and by making zero the eigenvalues with no rôle in the limit, we avoid
unwanted artifacts in the intermediate steps. Solving the system we find

β =
2

5
− |λ1|2 γ =

1

10
(21)

For example, for n = 4 we have |λ1|2 = 1
5 giving β = 1

5 . Notice that β = 1
5

is not optimal for every n, because |λ1| is not equal to 1
5 for every n. Fig. 8

shows the results of smoothing a valence 3 vertex with β = 1
5 instead of the

correct β ' 0.2518. The difference is small but noticeable.

Fig. 8. Left: β = 0.2 for the valence 3 vertices. Right: β = 0.2518 for the valence
3 vertices.
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3.4 The Support

After defining the stencils, the support of any
√

5 subdivision scheme depends
only on the direction of the rotation of the grid at each step, that is, on the
combination of steps of QP (2, 1) and QP (1, 2) we use. In the case we always
keep the same direction for the rotation then the grid never aligns with the
original grid and the support is fractal.

On the other hand, if we alternate the direction of the rotation at each
step, then the grid aligns with the original every even number of iterations. In
this case the arity of the double step is 5. Fig. 9 (left) shows the footprint of
a double step, that is, the non-zero points of the basis function after a double
step, and following [13] we can see that the support is again fractal. The
same Figure also shows a polygonal subset of the support calculated with the
method in [13]. Fig. 9 (right) shows an approximation of the support based
on four iterations of the scheme.

Fig. 9. Left: The footprint of the
√

5 scheme and a polygonal inner bound for
the support, calculated using the method in [13]. Right: An approximation to the
support based on four iterations of the scheme.

4 Results

We implemented the
√

5 scheme for quadrilateral meshes without boundaries.
Due to the direct interpretation of the subdivision process in terms of half-
edges, the code was less than three hundred lines, including the implementa-
tion of a half-edge structure. Fig. 10 shows some results.
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Fig. 10. First row: The basis function. Second row: A torus. Third row: A cube.

5 Conclusion – Future Work

We have presented a new
√

5 subdivision scheme for quad meshes. The most
interesting aspects of this scheme are:

• The new points have unique x and y coordinates with respect to the old
faces, giving room for fine-tuning with relatively small stencils.

• There is a natural correspondence between the new vertices and the old
half-edges. That makes the implementation almost trivial, and leads to a
general approach to subdivision as an averaging process with the half-edges
as the main primitive.

The rotation of the grid at each subdivision step raises many questions on
subdivision matrices with complex subdominant eigenvalues and, as we saw,
the reduction of the problem to the case of real eigenvalues through norms,
does not give satisfactory answers. In the future we plan a more systematic
study of the fourth, fifth and sixth eigenvalues of a subdivision matrix when
the second and the third eigenvalues are complex.
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Appendix

The way we calculate a halfedge-vertex in the
√

5-scheme suggests a general
averaging operator which can be used for a general description of subdivision.
Let

(P0, P1, . . . , Pn−1)T (22)

be a face of the mesh consisting of n vertices, written here as a n× 1 vector,
and let

c0P0 + c1P1 + · · ·+ cn−1Pn−1 (23)

be a new point corresponding to the half-edge P0P1. Then, by the rotational
symmetry of the connectivity of the face, all the new points corresponding to
its half-edges are given by

C × (P0, P1, . . . , Pn−1)T (24)

where C is a circulant matrix.

(a) (b) (c) (d)

Fig. 11. (a) The circulant averaging operator C. The small dots, each one cor-
responding to a half-edge of the face, are the new vertices (half-edge vertices).
(b),(c),(d) The mean average of the halfedge-vertices corresponding to an old edge,
vertex, or face, is used as a second operator.

Thus, the calculation of new points corresponding to old half-edges can
be seen as the action on the mesh of a circulant averaging operator C. Inter-
estingly, many major approximating subdivision schemes can be described as
the combination of C with the mean averaging of the halfedge-vertices corre-
sponding to the same old edge, vertex, or face, see Fig. 11.

Below we give examples of well-known schemes described in this way:

• Doo-Sabin: Traditionally, the Doo-Sabin scheme is not described with
the use of half-edges. However it has a trivial description in terms of the
operator C = circ( 9

16 ,
3
16 ,

1
16 ,

3
16 ).

• Loop: To describe the Loop [18] scheme for triangle meshes we use
C = circ( 3

8 ,
1
4 ,

3
8 ). Then we calculate a vertex-vertex as a linear combi-

nation of the corresponding old vertex and the mean average of the points
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corresponding to the half-edges starting from it, see Fig. 11(c). To find
a mid-edge vertex we average the two points corresponding to the two
half-edges of that edge, see Fig. 11(b).

• Catmull-Clark: Similarly, for the Catmull-Clark scheme we use C =
circ( 1

8 ,
1
8 ,

1
8 ,

5
8 ). We notice that for any vertex, averaging around all the

faces adjacent to it gives six times as much weight to the vertices directly
connected to it than to the vertex opposite to it, thus leading to the orig-
inal coefficients proposed in [6].

1/41/4

3/8

3/83/8

3/8

1/8

1/8 5/8

5/8 1/8

1/81/8

1/8

Fig. 12. Left: In the Loop scheme C acts with coefficients ( 3
8
, 1

4
, 3

8
). Right: In the

Catmull-Clark scheme C acts with coefficients ( 1
8
, 5

8
, 1

8
, 1

8
).

The mean averaging operator has been extensively studied in the context
of subdivision [10, 19, 15], and shown to have nice smoothness properties.
But it also has serious limitations in describing the existing schemes with
their usual stencils. Several extensions of the mean averaging operator have
been proposed in [19], but, to the best of our knowledge the circulant averaging
operator C has not been studied in full generality in the context of subdivision.
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