
Reverse Subdivision

Mohamed F. Hassan and Neil A. Dodgson

Computer Laboratory, University of Cambridge, UK
{mfh20|nad}@cl.cam.ac.uk

Summary. We present a reverse Chaikin algorithm which generates a multiresolu-
tion representation of any line chain. It has applications in multiresolution editing
and compression. We also sketch how this might be extended to the bivariate Loop
subdivision algorithm.

1 Introduction

Subdivision methods for curves were introduced and mathematically analysed
for the first time by de Rham in 1947. Their re-invention in 1974 by Chaikin
made them available to the computer graphics community. Chaikin used them
to derive a simple algorithm for the high-speed generation of curves. He first
proposed the binary 2-point approximating scheme in [1], which was shown
to produce the quadratic B-spline in the limit [6].

Here we present an algorithm, based on Chaikin’s algorithm, to decimate
a polygonal curve so that, when the uniform subdivision scheme is applied to
the decimated curve, a good approximation to the original curve is achieved.
The errors between the reconstructed and original polygons are stored so that
we can reconstruct the original polygon exactly. By continuing this process,
we can construct a hierarchy giving a multiresolution representation of the
original curve. Samavati and Bartels have previous explored reverse Chaikin
[7]. Also B-spline wavelets [9] solve the same problem but require the con-
struction of the high-frequency synthesis filter matrix, Q, and the solving
of a sparse linear system to perform the reverse subdivision. Our approach is
much simpler. The applications for this include lossy and lossless compression,
multiresolution editing, and animation.

In Sects. 2–6 we present the Reverse Chaikin method; in Sect. 7 we show
how this can be extended to the bivariate case, using Loop [5] as our subdi-
vision scheme.

nad10
Text Box
Advances in Multiresolution for Geometric Modelling, N. A. Dodgson, M. S. Floater, M. A. Sabin (editors),Springer, 2005, ISBN 3-540-21462-3, pp.283–271

272 Mohamed F. Hassan and Neil A. Dodgson

Fig. 1. Left: Chaikin’s scheme – the large circles are points of the original polygon
and the small circles are the points after one subdivision step. Right: Reverse Chaikin
– the small circles are the original points and the large circle is the point after one
reverse subdivision step. The filled circles are the two candidate points using the
two different pairs of original points.

2 Reverse Chaikin

Chaikin’s scheme can be defined formally by

pn+1
2i−1 = 3

4p
n
i + 1

4p
n
i+1,

pn+1
2i = 1

4p
n
i + 3

4p
n
i+1,

(1)

where pnm is the position in R3 of point m after n subdivision steps (see
Fig. 1(left)).

We would like to reverse this process. Now, solving (1) for pni gives

pni =
3

2
pn+1

2i−1 −
1

2
pn+1

2i . (2)

However, solving (1) for pni+1 and re-indexing gives

pni =
3

2
pn+1

2i−2 −
1

2
pn+1

2i−3. (3)

Geometrically, this means that there are two sets of pairs of points in the
subdivided polygon that can be used to calculate the position of a single point
in the original. If Chaikin’s scheme was used to produce the refined polygon
there is no problem, as the two positions will coincide. However, this cannot
be guaranteed in the general case. Our solution is to take the average of the
two positions and store the error vectors (see Fig. 1(right)).

Formally this gives

pni = −1

4
pn+1

2i−3 +
3

4
pn+1

2i−2 +
3

4
pn+1

2i−1 −
1

4
pn+1

2i , (4)

eni =
1

4
pn+1

2i−3 −
3

4
pn+1

2i−2 +
3

4
pn+1

2i−1 −
1

4
pn+1

2i . (5)

The forward Chaikin step then becomes:

pn+1
2i−1 = 3

4 (pni + eni) + 1
4 (pni+1 − eni+1),

pn+1
2i = 1

4 (pni + eni) + 3
4 (pni+1 − eni+1).

(6)

Reverse Subdivision 273

2.1 Wavelet Formulation

At first sight the formulation above may appear not to be a wavelet transfor-
mation because the errors, eni , are added to the points, pni , before the subdivi-
sion step rather than after, as would be the case with a wavelet transformation.
However, some straightforward algebraic manipulation converts it to a wavelet
formulation.

If we write pn−1 = Anpn and en−1 = Bnpn, where pn = [pn0 p
n
1 p

n
2 . . .]

T

(and similarly for en), then, from (4) and (5), the wavelet analysis filters, An

and Bn are:

An =
1

4

. . .

−1 +3 +3 −1
−1 +3 +3 −1

−1 +3 +3 −1
. . .

Bn =
1

4

. . .

+1 −3 +3 −1
+1 −3 +3 −1

+1 −3 +3 −1
. . .

Similarly, if we write the synthesis step as pn = Pnpn−1 + Qnen−1 then
the wavelet synthesis filters, Pn and Qn are derived from (6) as:

Pn =
1

4

. . .
...
3 1
1 3

3 1
1 3

3 1
1 3

...
. . .

Qn =
1

4

. . .
...

+3 −1
+1 −3

+3 −1
+1 −3

+3 −1
+1 −3

...
. . .

The advantage of this reverse Chaikin method over many wavelet methods
is computation speed: both the analysis and the synthesis filters are sparse,
whereas in many wavelet methods (e.g. the B-spline wavelets [9]) the analysis
filters, An and Bn, are dense, thus requiring quadratic rather than linear time
to perform the analysis (reverse subdivision) step näıvely, or else requiring the
solution of a linear system [9].

In addition, there are a number of subtleties in the practical implementa-
tion of reverse subdivision which make the wavelet formulation difficult, but
which can be handled in the algorithmic formulation by simple modifications
to the algorithm, as described in the following section.

274 Mohamed F. Hassan and Neil A. Dodgson

Fig. 2. Local spherical coordinate frame. The local cartesian frame for the error at
V1 is defined by the reverse subdivided points V0, V1, and V2: The x basis vector
is parallel to V2 − V0. The z basis vector is perpendicular to the plane defined by
{V0, V1, V2}, and the y basis vector is given by z × x. r and θ are the standard
spherical coordinates, φ is angle from the xy-plane.

3 Subtleties

3.1 Local Coordinate Frame for Errors

If the error vectors are stored näıvely, one of the primary uses of this algorithm
is lost. The reason for this is that for editing purposes we would like to edit
the reverse subdivided curve and have the changes manifest in the detailed
curve, without changing the error vectors. We can see immediately that if
we apply a similarity transformation to the reverse subdivided curve, we will
have to apply the same transformation to the error vectors in order to get the
transformed version of the original curve, which is undesirable. Our solution
to this problem is to use a local coordinate frame for the error vectors (see
Fig. 2).

The local cartesian frame for the error at a reverse subdivided point is
defined by that point and its immediate neighbours. The x unit basis vector
is chosen to be parallel to the vector between the two neighbouring points. The
z unit basis vector is perpendicular to the plane defined by these three points,
and the y basis vector is given by z × x. r and θ are the standard spherical
coordinates, φ is the angle from the xy-plane. The x vector and the definition
for φ were chosen such that θ and φ would be close to 0. Finally r can be
stored as a fraction of the magnitude of the vector between the neighbouring
points. A similar co-ordinate system is used by Stollnitz et al. [9].

Now, if we apply a similarity transformation to the reverse subdivided
points and subdivide them using the same stored errors, we will get the same
transformation of the original polygon. An example is shown in Fig. 3.

3.2 Odd Vertex Number

There is another subtlety. Suppose we have n vertices. After one Chaikin
subdivision step we will have either 2n vertices, for closed loops, or 2n− 2 for

Reverse Subdivision 275

Fig. 3. An example of a similarity transformation. (a) The original outline. (b) The
reverse subdivision of (a). (c) A similarity transformation of (b). The subdivision
of (c) using the same errors as the original reverse subdivision. The circles indicate
the position of the vertices. To perform reverse subdivision the centre vertex on the
left hand side of (a) must be duplicated to give an even number.

Fig. 4. One step of reverse Chaikin can produce two possible solutions. In this
example, a six-vertex polygon (solid line) is reduced to two alternative triangles
(heavy dashed line). The solid circles are the original vertices; the positions of the
computed vertices are open squares, these are averaged to give the final position,
which is shown by a solid square.

open line chains. This means that Reverse Chaikin has a problem if we have
an odd number of vertices. This problem is simply overcome by duplicating
the last vertex and tagging that we have done so in the error file. See Fig. 3,
where the central vertex on the left hand side is duplicated.

3.3 Alternative Configurations

A problem, which is best illustrated on closed loops, is that there are multiple
possible simplifications. Fig. 4 shows an example of a closed loop of six vertices
and the two possible three-vertex polygons which can be produced by the
reverse Chaikin algorithm. A choice between the two alternatives must be
made at each level of reverse subdivision, leading to 2k possible decimated
line chains after k steps of reverse subdivision. This is not ideal, but it cannot
be avoided. This is handled by generating both possible decimated line chains
at each step of reverse subdivision, and then picking the one with the smallest
error vectors. This is especially important for line chains which were originally

276 Mohamed F. Hassan and Neil A. Dodgson

generated by Chaikin subdivision, as the correct version will have zero error
vectors, while the alternative version will, in general, have non-zero error
vectors.

This problem can also manifest in an open chain with an odd number of
vertices, as either end can be considered to be the start of the chain, with the
other end having the duplicated vertex mentioned in Sect. 3.2.

This problem is specific to the univariate case. In the bivariate case, the ex-
traordinary vertices fix the topology of the reverse subdivided mesh, although
they bring in their own problems, described in Sect. 8.

4 Examples

An example of a similarity transformation is given in Fig. 3. The original
line chain is reverse subdivided, transformed, and then subdivided using the
same errors as the original reverse subdivision. We can see that, after this
procedure, the final line chain is the similarity transformation of the original.

An example of local editing can be seen in Fig. 5. The left side, top to bot-
tom, is the reverse subdivided outline of England (585 vertices to 37 vertices).
The right side, bottom to top, is the modified outline, subdivided using the
same errors as the left side. We can see that we achieve a local editing of the
original curve without loss of detail.

5 Examining Stability

It is important to examine the behaviour of the algorithm when applied mul-
tiple times; as the algorithm relies on local extrapolation, errors could tend
to be magnified. Hence the distance to the original curve may grow rapidly
causing it to become unstable.

To examine the stability of our algorithm qualitatively, we perform the
following experiment: we construct a subdivision curve from a coarse line
chain by applying Chaikin’s scheme. After a fixed number of subdivisions we
add white noise to each vertex. Then we smooth the curve by removing the
error coefficients at the finest levels.

The results of the noise-removal experiment can be seen in Fig. 6. We see
that the algorithm slowly reduces the amplitude of the noise over a number
of smoothing steps and hence is stable for practical applications. This also
means that the algorithm can be used for lossy compression as described in
the next section.

6 Storage and Compression

The reverse Chaikin algorithm presented in Sect. 2 is suitable for multiresolu-
tion editing, provided that the error vectors are stored in the format described

Reverse Subdivision 277

Fig. 5. Example: Local editing. The left side, top to bottom, is the reverse sub-
divided outline of England (585 vertices to 37 vertices). The right side, bottom to
top, is the modified outline, reconstructed using the same errors as the left side. The
circle indicates the modified vertex.

278 Mohamed F. Hassan and Neil A. Dodgson

Base

n = 6

n = 5

n = 4

n = 3

n = 2

n = 1

n = 0Noise

Fig. 6. Noise-removal experiment: Top-left shows the base curve. Middle-left shows
the base curve subdivided 6 times (384 vertices). Bottom-left shows the curve with
added noise – the average magnitude of the noise is 3 times the average distance
between vertices. Middle and right show the results after the error coefficients at n
and above steps have been set to zero.

in Sect. 3. The assumption is that vertex coordinates and error vectors are
stored to the floating-point precision of the computer. The reverse Chaikin
representation thus uses the same amount of storage space as the original set
of vertices. Indeed, it can be seen as a simple wavelet transform (Sect. 2.1):
transforming one set of floating-point coordinates into another, both sets con-
taining the same number of values.

For lossless compression, it is necessary to store the reverse Chaikin error
vectors in less space than is required to store vertex coordinates. The local
coordinate system introduced in Sect. 3 allows us to compress error vectors
more efficiently than vertex coordinates because we can expect the r, θ, and φ
coordinate values to be close to zero with high probability. Such a distribution
of coordinate values allows for efficient coding, as shorter codes can be used
for the more likely values. In particular, we note that φ should be very close
to zero in most cases, because we can expect vertices at level (n + 1) to lie
very close to the plane through the three nearest vertices at level n. By similar
reasoning θ should be close to zero.

Lossy compression can be achieved in two complementary ways. Firstly, the
quantisation of vertex coordinates and error vectors can be made increasingly
coarse. There is obviously some loss of resolution in the position of vertices,
but the more important disadvantage is that errors in position will accumulate
as coarsely-quantised error vectors are added to intermediate-level vertices

Reverse Subdivision 279

which have themselves been calculated using error vectors: the absolute error
in position increasing as the subdivision level increases.

The second way of achieving lossy compression is simply to throw away
error vectors. For example, throwing away the error vectors at just the highest
subdivision level will remove (almost) half of the data. This means that the
highest level is now approximated by the uncorrected Chaikin subdivision of
the next highest level. If the original line chain is of sufficiently high reso-
lution, then a reasonable approximation to the original may be achieved by
the uncorrected Chaikin subdivision generated from several levels of reverse
Chaikin without any error vectors being stored. This significantly reduces the
storage required for the line chain. A related compression technique for line
chains, with similar motivation, is the Douglas–Pücker algorithm [2], which
replaces a line chain by a coarser line chain which approximates the original
to some tolerance but which does not allow for multiresolution editing.

7 Theory of the Bivariate Case

This section provides the theory to extend these ideas to the bivariate case.
Samavati et al. [8] have produced an algorithm to generate multiresolution sur-
faces by a reverse Doo subdivision method using a local least-squares method.
Khodakovsky et al. [4] use a wavelet transform based on Loop subdivision [5]
for geometry compression. As with all wavelet methods a high-pass recon-
struction filter Q must be constructed, and also there is no theory for wavelet
constructions around irregular vertices so this is done ad hoc. Finally comput-
ing the forward wavelet transform requires solving linear systems. Our method
is simpler and is also based on Loop subdivision.

First, we have to define the constraints of the starting mesh. Here we
present an algorithm which works on triangular meshes with binary subdi-
vision connectivity. This is not such a heavy constraint as there are many
algorithms that will transform an arbitrary mesh to one with subdivision con-
nectivity (e.g. [10]). Our algorithm naturally splits into two parts.

The first part is to detect whether the given mesh has subdivision connec-
tivity and construct the connectivity of the coarse level mesh. Two algorithms
achieve this. Taubin’s algorithm [11] is based on the concept of the covering
surface in algebraic topology. The algorithm proposed by Hormann in [3] is
simpler and uses the observation that most of the vertices of a mesh with
subdivision connectivity are regular and all irregular vertices are guaranteed
to be vertices of the coarse level mesh. Both these algorithms give a set of
candidate vertices for the coarse level to which we can apply the next stage
of the algorithm.

The next stage uses the inverse of the subdivision matrix of the given
uniform scheme in order to construct the geometry of the coarse level vertices.
There are a number of practical considerations in the implementation. One
interesting issue is that the extraordinary vertices must be preserved between

280 Mohamed F. Hassan and Neil A. Dodgson

Fig. 7. Stencils for the Loop subdivision scheme for regular vertices. The square
indicates the vertex being calculated.

Fig. 8. Coefficients for the reverse subdivision scheme for regular vertices. Left: the
stencil for one set of points: calculating the position of the central vertex. Right:
the stencil for an alternative set of points: calculating the position of one of the
non-central vertices. In both cases, the square indicates the vertex being calculated.

subdivision levels. This limits the form of a reverse subdivided mesh and may
mean that, in some cases, there is no possible valid mesh which can be created
at a coarser level. There are various potential solutions to this, including
splitting the mesh into sub-meshes, which are then stitched together in some
way.

7.1 Geometry of Regular Vertices

Fig. 7 shows the stencil for the standard Loop subdivision scheme in the
regular case. We use this to form the subdivision matrix around a vertex.
The inverse of this matrix gives us the coefficients for the reverse subdivision
scheme (shown in Fig. 8(left)).

However the inverse subdivision matrix also shows that we can use other
points to define the same vertex (see Fig. 8(right)). This is analogous to the
univariate case. In this case there are seven candidate vertices (see Fig. 9),
rather than the two in the univariate case. So now we take the Loop subdi-
vision of the seven cases to be our actual vertex and store the errors. Again,

Reverse Subdivision 281

Fig. 9. Each dashed hexagon represents a set of vertices that can be used to calculate
the central reverse subdivided vertex (indicated by the square). At left are three (out
of the seven) sets of vertices and at right all seven are shown.

and for the same reasons, we use a local coordinate frame similar to that used
in the univariate scheme.

7.2 Geometry of Extraordinary Vertices

Fig. 10(a) shows the Loop subdivision scheme for n-valent vertices. This time
we cannot simply take the inverse of the subdivision matrix to calculate the
coefficients of the reverse subdivision scheme as the values and size of the
matrix are dependent on n, the valency. Instead we formulate the linear system
as follows:

p′0 = (1− an)p0 +

n∑

i=1

an
n
pi (7)

p′i =
3

8
(p0 + pi) +

1

8

(
pi−1(n) + pi+1(n)

)
(8)

where p0 is the extraordinary vertex and {pi|i = 1, . . . , n} are its immediate
neighbours.

Solving this system for p0 gives

p0 = (1− bn)p′0 +

n∑

i=1

bn
n
p′i (9)

where

bn = 1 +
5

8an − 5
(10)

This is independent of the actual an used. Hence the reverse subdivided
scheme is given by Fig. 10(b).

As with the regular case, these points can also be used to calculate the
neighbouring points (see Fig. 10(c)). The coefficients are given by {cin|i =
0, . . . , n}, where n is the valency. Unfortunately we have not found a closed

282 Mohamed F. Hassan and Neil A. Dodgson

Fig. 10. Extraordinary vertices. (a) shows the standard Loop subdivision at ex-

traordinary vertices, where usually an = 1
64

(
40−

(
3 + 2 cos 2π

n

)2)
. (b) shows the

reverse Loop subdivision at extraordinary vertices, where bn = 1 + 5
8an−5

(inde-
pendent of the expression for an). (c) shows the alternative stencil for the general
n-valent vertex. (d) shows the alternative stencil for a 5-valent vertex. The square
indicates the vertex being calculated.

form for the {cin} so the inverse subdivision matrix has to be calculated for
each valency.

However, we find that c0n = 3
8an−5 for all n and we can see by symmetry

that cn−in = ci+2
n , i = 0, . . . , n − 2. The same mechanism is used as in the

regular case to handle the candidate vertices.

8 Future Work

We have yet to implement and test the bivariate algorithm given in the pre-
vious section, and this is the obvious next step. We will use Hormann’s al-
gorithm [3] as the basis for the topology step. We expect the bivariate case
to find uses in the same applications as the univariate case: multiresolution
editing and compression.

Reverse Subdivision 283

Acknowledgement

This work was supported in part by the European Union research project
“Multiresolution in Geometric Modelling (MINGLE)” under grant HPRN–
CT–1999–00117.

References

1. G.M. Chaikin. An algorithm for high-speed curve generation. Computer Graph-
ics and Image Processing, 3:346–349, 1974.

2. D. Douglas and T. Pücker. Algorithms for the reduction of the number of
points required to represent a digitised line or its caricature. The Canadian
Cartographer, 10:112–122, 1973.

3. K. Hormann. An easy way of detecting subdivision connectivity in a triangle
mesh. Technical Report 3, Department of Computer Science 9, University of
Erlangen, May 2002.

4. Andrei Khodakovsky, Peter Schröder, and Wim Sweldens. Progressive geometry
compression. In Proc. ACM SIGGRAPH 2000, pages 271–278, 2000.

5. C. T. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah, Department of Mathematics, 1987.

6. R. F. Riesenfeld. On Chaikin’s algorithm. Computer Graphics and Image Pro-
cessing, 4:304–310, 1975.

7. F. Samavati and R. Bartels. Multiresolution curve and surface representation by
reversing subdivision rules. Computer Graphics Forum, 18(2):97–119, 6 1999.

8. F. Samavati, N. Mahdavi-Amiri, and R. Bartels. Multiresolution surfaces having
arbitrary topologies by a reverse Doo subdivision method. Computer Graphics
Forum, 21(2):97–119, 6 2002.

9. E. J. Stollnitz, T. D. DeRose, and D. H. Salesin. Wavelets for computer graphics.
San Francisco; Morgan Kaufmann Publishers, 1996.

10. Vitaly Surazhsky and Craig Gotsman. Explicit surface remeshing. In Proc.
Eurographics Symposium on Geometry Processing, pages 17–28, June 2003.

11. G. Taubin. Detecting and reconstructing subdivision connectivity. Visual Com-
puter, 2002.

