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Summary. This article deals with practical conditions for tuning a subdivision
scheme in order to control its artifacts in the vicinity of a mark point. To do so, we
look for good behaviour of the limit vertices rather than good mathematical prop-
erties of the limit surface. The good behaviour of the limit vertices is characterised
with the definition of C2-convergence of a scheme. We propose necessary explicit
conditions for C2-convergence of a scheme in the vicinity of any mark point being a
vertex of valency greater or equal to three.

1 Introduction

A bivariate subdivision scheme defines a sequence of polygonal meshes each
of whose vertices is a linear combination of vertices belonging to the previous
mesh in the sequence. Such a scheme is interesting if the sequence converges to
a surface which is as regular as possible. Tuning is the choosing of coefficients
for the linear combinations used in constructing new points. This article deals
with conditions which may be used for tuning a scheme in order to get such
a sequence.

Some schemes (Loop [7], Catmull-Clark [4], Doo-Sabin [5],. . .) are defined
so that each polygonal mesh is the control polyhedron of a Box-Spline sur-
face which is the limit surface of the sequence. In this case the convergence
and regularity problems are solved by definition, except around extraordi-
nary vertices. An extraordinary vertex is a vertex of the mesh whose valency
is not equal to six if the mesh faces are triangles, or not equal to four if the
mesh faces are quadrilaterals. For extraordinary vertices in a Box-Spline based
scheme and for all vertices in other schemes, the convergence of the scheme
and the regularity of its limit surface in the vicinity of a vertex need to be
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analysed. This analysis may lead to a tuning of the scheme. In most cases,
the coefficients of the linear combinations depend only on the local topology
of the mesh, and not on its geometry. Moreover, we assume the scheme to be
stationary: the coefficients remain the same through the sequence of polygonal
meshes.

The first analysis of the behaviour of the limit surface around an extraor-
dinary vertex was by Doo and Sabin [5]. They give necessary conditions for
a scheme being convergent towards a C2-continuous limit surface. These con-
ditions are derived from estimates of its first and second derivatives around
the extraordinary vertex. Subsequently, most researchers have interpreted this
question as follows: the mesh around but excluding the extraordinary vertex
is the control polyhedron of continuous patches. At each subdivision step, a
new ring of such patches fills in a part of the n-sided hole created by the
virtual removal of the extraordinary vertex. The researchers analyse how this
iterative insertion of new rings converges and completely fills in this hole. Ball
and Storry [1] give sufficient conditions for the surface being tangent plane
continuous. Reif [11] remarks that, in terms of differential geometry, a surface
is Cp-continuous if there exists a Cp function which parameterizes it. If the
limit surface is tangent plane continuous, the surface can be parameterized
over a characteristic map of this tangent plane around the extraordinary ver-
tex. Reif gives necessary and sufficient conditions for any stationary scheme to
be convergent towards a C1-continuous surface. Independently, Prautzsch [9]
and Zorin [16] proposed in the late 90’s necessary and sufficient conditions
for a scheme to be convergent towards a Cp-continuous surface. They both
use more or less the parameterization over the characteristic map proposed
by Reif.

Most of the prior work on tuning subdivision schemes alters local coef-
ficients in order to fulfil the aforementioned necessary and sufficient condi-
tions [13]. But mathematical Cp-continuity of the limit surface is perhaps
not the best target to aim for. We may look for good behaviour of the limit
vertices rather than good mathematical properties of the limit surface. Good
behaviour of the limit vertices may mean fewer artifacts on the limit sur-
face [14]. For instance, Prautzsch and Umlauf tuned the Loop and Butterfly
schemes in order to make them C1 and C2-continuous around an extraordi-
nary vertex by creating a flat spot [10]; but a flat spot may be considered
as an artifact. Furthermore, the necessary and sufficient conditions for C2-
continuity of the limit surface are not explicit if the scheme is not Box-Spline
based.

In this paper, we characterise the good behaviour of the limit vertices
with the definition of C2-convergence of a scheme. This definition is based
on the interpretation proposed implicitly by Doo and Sabin [5]. Each control
mesh is viewed not as the control polyhedron of a Box-Spline surface but
as the sampling of a continuous surface. Thus the sequence of meshes are
samplings of a sequence of continuous surfaces which converges uniformly
towards the limit surface. Naturally, C2-convergence of a scheme is related
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to the C2-continuity of the limit surface: it is a sufficient condition for it.
And because the definition of C2-convergence of a scheme is theoretical and
formal, we propose in this paper explicit but only necessary conditions for
C2-convergence.

In the following section, we present the theoretical tools we use in Sect. 3
to establish the necessary conditions for a scheme to C2-converge.

2 Theoretical Tools

We first describe our notation and then we propose the definition for the Cp-
convergence of a scheme. From this definition, we derive a description of the
limit points. Finally the eigenanalysis of the Fourier transformed subdivision
matrix gives a description of the limit frequencies.

2.1 Notation

We study the convergence of a subdivision scheme towards a regular surface
in the vicinity of a vertex which is a mark point. A mark point is a point of
a mesh whose vicinity keeps the same topology throughout subdivision. For
instance, mesh vertices are mark points in the case of Loop or Catmull-Clark
subdivision schemes, and face centres but not mesh vertices are mark points
in the case of Doo-Sabin refinement. As a consequence, our analysis does not
apply to Doo-Sabin nor to other schemes where the vertices are not mark
points. The generalisation of this analysis to any mark point being a vertex
or a face centre can be found in a technical report by the same authors [6]
which also contains detailed proofs of the results presented here.

Let A be the mark point, and n its valency (number of outgoing edges from
A). We assume that the vicinity of A is made up of ordinary vertices. This
hypothesis is relevant because after a subdivision step, the vertices of the mesh
map to vertices with the same valency, and new vertices are created which are
all ordinary. Thus, after several subdivision steps, every extraordinary vertex
is surrounded by a sea of ordinary vertices. As a consequence, the vicinity of
A may be divided into n topologically equivalent sectors. In the jth sector, let
Bj , Cj , Dj . . . be an infinite number of vertices sorted from the topologically
nearest vertex from A to the farthest. If there exist two vertices in one sector
on the same ring which are in complementary positions then they are labelled
with the same letter, but with a prime put on the vertex which is further
anticlockwise from the positive x-axis. An example is E and E ′ in Fig. 1.
However, if the points are not in complementary positions, then they are
given distinct letters.

Let A(k) be the mark point and {B(k)
j , C

(k)
j , D

(k)
j . . .}j∈1...n its vicinity

after k subdivision steps. All these vertices are put into an infinite vector

P(k) :=
[
A(k)B

(k)
1 · · ·B(k)

n C
(k)
1 · · ·C(k)

n D
(k)
1 · · ·D(k)

n · · ·
]T
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Fig. 1. Labelling of the vicinity of a mark point

Finally, a surface is Cp-continuous if there exists a Cp-diffeomorphic param-
eterization of it from a subset of R2. We define a parameterization domain
by projecting onto R2 without folding the polygonal mesh around the mark
point. A(k) is projected onto (0, 0), and ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},
X

(k)
j is projected onto (x

(k)
j , y

(k)
j ). For simplicity, we ask (x

(k)
j , y

(k)
j ) to lie on

the same circle for given k and X, and to lie on the same radial axis for given
j and X:

(x
(k)
j , y

(k)
j ) := (%

(k)
X cos(θ(X,j)), %

(k)
X sin(θ(X,j)) ,

where

θ(X,j) :=
2π

n
(j + αX) ,

Furthermore, because the vertices X
(k)
j converge to the limit mark point if

the scheme converges [11], we ask that limk→∞(%
(k)
X ) = 0. The choice of the

phases αX and the radii %
(k)
X remains free. These degrees of freedom will be

used in the characterisation of C1-convergence in Sect. 3.

2.2 Cp-Convergence and Behaviour of the Limit Points

We propose the following definition for the Cp-convergence of a scheme. The
scheme Cp-converges in the vicinity of A if

• for every X in the infinite vicinity {B,C,D, . . .} of A, there exist phases

αX and, for all j in {1, . . . , n}, for every k, radii %
(k)
X and a Cp-continuous

function F (k)(x, y) such that

A(k) = F (k)(0, 0) ,

X
(k)
j = F (k)(%

(k)
X cos(θ(X,j)), %

(k)
X sin(θ(X,j))) .
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• Furthermore, the sequence of pth differentials
(
dpF (k)

)
k

converges uni-
formly onto dpF which is the pth differential of a Cp-continuous param-
eterization F(x, y) of the limit surface in the vicinity of the limit mark
point.

• Finally, for all q ∈ 0, . . . , p−1, the sequence
(
dqF (k)(0, 0)

)
k

converges onto
dqF(0, 0).

In this definition, an infinite vicinity {B,C,D, . . .} is taken into account. In
any practical application, we will consider only a finite number of vertices.
More precisely, we choose the set of vertices which will influence the limit
position of the mark point and its neighbourhood. This practical restriction
is not inconsistent with finding only necessary conditions for Cp-convergence.
From the definition, we see that if the scheme Cp-converges in the vicinity
of A, then the sequence of meshes converges towards a Cp-continuous sur-
face around the limit mark point. But the converse is not true: a scheme,
which converges towards a Cp-continuous surface is not necessarily Cp-
convergent. Note also that the definition domain of F (k) shrinks as k grows

since limk→∞(%
(k)
X ) = 0 from Sect. 2.1.

In Sect. 3 we will consider the necessary conditions for C2-convergence.
Therefore, consider a scheme which C2-converges in the vicinity of the mark
point A. The parameterization F(x, y) is C2-continuous. From its Taylor ex-
pansion around (0, 0), we may describe the behaviour of the limit points in the
vicinity of A. In the following lines, we detail this behaviour with derivatives of
the limit function and according to the regularity of the scheme convergence.
If the scheme C0-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

(A(k)) = F(0, 0) , and lim
k→∞

(X
(k)
j ) = F(0, 0) . (1)

If the scheme C1-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞

(
X

(k)
j −F (k)(0, 0)

%
(k)
X

)
= cos(θ(X,j))

∂F
∂x

(0, 0) + sin(θ(X,j))
∂F
∂y

(0, 0) . (2)

If the scheme C2-converges then ∀X ∈ {B,C,D, . . .}, ∀j ∈ {1, . . . , n},

lim
k→∞


∆

(k)
X,j

%
(k)
X

2


 =

(
∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0)

)
1

4
+

∂2F
∂x∂y

(0, 0)
sin(2θ(X,j))

2

+

(
∂2F
∂x2

(0, 0)− ∂2F
∂y2

(0, 0)

)
cos(2θ(X,j))

4
. (3)

with

∆
(k)
X,j := X

(k)
j −F (k)(0, 0)−%(k)

X (cos(θ(X,j))
∂F (k)

∂x
(0, 0)+sin(θ(X,j))

∂F (k)

∂y
(0, 0))



264 Cédric Gérot, Löıc Barthe, Neil A. Dodgson, and Malcolm Sabin

2.3 Eigenanalysis of the Transformed Subdivision Matrix

Consideration of the relationship between the spatial and frequency domains
allows us to produce necessary conditions for C2-convergence. In this section
we introduce the necessary notation for the subdivision matrix transformed
into the frequency domain. We may write the discrete rotational frequencies

X̃(k)(ω) of each set of vertices {X(k)
j }j∈1...n by applying a Discrete Fourier

Transform. It is well-known [1] that there exists a matrix M̃(ω) such that for
all ω in

{
−bn−1

2 c, . . . , bn2 c
}

,

P̃(k+1)(ω) = M̃(ω)P̃(k)(ω)

where, if ω 6= 0,

P̃(k)(ω) :=
[
B̃(k)(ω)C̃(k)(ω)D̃(k)(ω) · · ·

]T

and otherwise

P̃(k)(0) :=
[
Ã(k)(0)B̃(k)(0)C̃(k)(0)D̃(k)(0) · · ·

]T
.

For every discrete rotational frequency ω, the matrix M̃(ω) is supposed to
be non defective (otherwise we should use the canonical Jordan form)

M̃(ω) = Ṽ(ω)−1Λ̃(ω)Ṽ(ω)

where the columns ṽl(ω) of Ṽ(ω)−1 are the right eigenvectors of M̃(ω), the
rows ũT

l (ω) of Ṽ(ω) are the left eigenvectors of M̃(ω), and Λ̃(ω) is diagonal

whose diagonal components λ̃l(ω) are the eigenvalues of M̃(ω), with l ≥ 1. Let
L−l (ω), Ll(ω), and L+

l (ω) be sets of indices such that

if q ∈ L−l (ω) then
∣∣∣λ̃q(ω)

∣∣∣ <
∣∣∣λ̃l(ω)

∣∣∣ ,

if q ∈ Ll(ω) then
∣∣∣λ̃q(ω)

∣∣∣ =
∣∣∣λ̃l(ω)

∣∣∣ ,

if q ∈ L+
l (ω) then

∣∣∣λ̃q(ω)
∣∣∣ >

∣∣∣λ̃l(ω)
∣∣∣ ,

where
∣∣∣λ̃
∣∣∣ is the modulus of the complex number λ̃. Then, with P(q, ω) =

ũq(ω)
T
P̃ (0)(ω), we get for every l,

P̃(k)(ω)−
∑

q∈L+
l (ω)

λ̃q(ω)
kP(q, ω)ṽq(ω) (4)

= λ̃l(ω)
k


 ∑

q∈Ll(ω)

P(q, ω)ṽq(ω) +
∑

q∈L−l (ω)

(
λ̃q(ω)

λ̃l(ω)

)k
P(q, ω)ṽq(ω)


 .
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Thus, as k grows to infinity,

λ̃l(ω)
k ∑

q∈Ll(ω)

P(q, ω)ṽq(ω)

is a good estimate of the frequency

P̃(k)(ω)−
∑

q∈L+
l (ω)

λ̃q(ω)
kP(q, ω)ṽq(ω)

in the same way that
∑

a+b=l

xayb

l!

∂lF
∂xa∂yb

(0, 0)

is a good estimate of the function

F(x, y)−
∑

a+b<l

xayb

l!

∂lF
∂xa∂yb

(0, 0)

as (x, y) converges to (0, 0).

3 Necessary Conditions for C2-Convergence
and Derivatives of the Limit Surface

Equations (1), (2) and (3) describe the behaviour of the limit points. Apply-
ing the Discrete Fourier Transform on these equations gives a description of
the limit frequencies. The consistency between this description and the one
given by equation (4) implies necessary conditions for the C2-convergence of
the scheme. It also gives the partial derivatives of the limit surface in the
mark point. As a notation, if X̃(k)(ω) is the mth component of P̃(k)(ω), then
(ṽl(ω))X is the mth component of ṽl(ω). We assume also without any restric-

tion that for every fixed ω, λ̃2(ω) is the eigenvalue of M̃(ω) with the greatest
modulus after λ̃1(ω) and any other eigenvalues with same modulus as λ̃1(ω):
for all ω, L1(ω) = L+

2 (ω).

3.1 C0-Convergence

If the scheme C0-converges, then

{
λ̃1(0) = 1 ,∣∣∣λ̃1(ω)

∣∣∣ < 1 if ω 6= 0,

and if L1(0) = {1},
(ṽ1(0))X = ν0
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with ν0 being a constant, and

F(0, 0) =
P(1, 0)

n
(ṽ1(0))X .

Not only do we get necessary conditions on eigenvalues and eigenvectors of
M̃(ω), but we get also the value of F(0, 0), that is the limit mark point.

3.2 C1-Convergence

If the scheme C1-converges and the mark point is a vertex, then
∣∣∣λ̃2(0)

∣∣∣ <
∣∣∣λ̃1(±1)

∣∣∣ and
∣∣∣λ̃1(ω)

∣∣∣ <
∣∣∣λ̃1(±1)

∣∣∣ ,

with ω 6∈ {−1, 0, 1}.
Furthermore, when k is large, if L1(1) = L1(−1) = {1}, the moduli of the

eigencomponents |(ṽ1(1))X | and |(ṽ1(−1))X | are sorted like the radii, %X , of
the rings.

If the scheme is rotationally invariant, the modulus of the eigenvalue∣∣∣λ̃1(1)
∣∣∣ =

∣∣∣λ̃1(−1)
∣∣∣ gives the speed of the parameters’ shrinkage during the

subdivision process. The freedom we had in the choice of the parameters %
(k)
X

and the phase αk is restricted. But there remains enough freedom to write

things quite simply. For simplicity, we can define the radii %
(k)
X as follows:

%
(k)
X =

∣∣∣λ̃1(1)
∣∣∣
k

|(ṽ1(1))X | =
∣∣∣λ̃1(−1)

∣∣∣
k

|(ṽ1(−1))X | .

Furthermore, if we define αX as

αX =
n

2π
ϕ(ṽ1(−1))X

with ϕ(ṽ1(−1))X
being the phase of (ṽ1(−1))X , and if

∂F
∂x

(0, 0)± i
∂F
∂y

(0, 0) 6= 0 ,

then {
∂F
∂x (0, 0) = 2

n < (P(1, 1)) = 2
n < (P(1,−1)) ,

∂F
∂y (0, 0) = 2

n = (P(1, 1)) = − 2
n = (P(1,−1)) ,

with < (P(1, 1)) and = (P(1, 1)) being respectively the real and the imaginary
parts of P(1, 1).

In conclusion, the necessary conditions for C1-convergence are dominance
of the main eigenvalues M̃(1) and M̃(−1), after the main eigenvalue from M̃(0),
and a configuration of the elements of the associated eigenvectors which defines
the vertices’ coordinates in an injective parametric space. Furthermore, these
conditions give us the values of ∂F

∂x (0, 0) and ∂F
∂y (0, 0).
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3.3 C2-Convergence

If the scheme C2-converges and the mark point is a vertex, then

λ̃2(0) =
∣∣∣λ̃1(±2)

∣∣∣ =
∣∣∣λ̃1(±1)

∣∣∣
2

, and
∣∣∣λ̃1(ω)

∣∣∣ <
∣∣∣λ̃1(±1)

∣∣∣
2

,

with ω 6∈ {−2,−1, 0, 1, 2}. Furthermore,

∣∣∣λ̃2(±1)
∣∣∣ <

∣∣∣λ̃1(±1)
∣∣∣
2

if and only if

lim
k→∞




∣∣∣∂F(k)

∂x (0, 0)∓ i∂F
(k)

∂y (0, 0)
∣∣∣−
∣∣∣∂F∂x (0, 0)∓ i∂F∂y (0, 0)

∣∣∣
∣∣∣λ̃1(±1)

∣∣∣
k


 = 0 .

Furthermore, if L2(0) = {2}, then

(ṽ2(0))X − (ṽ2(0))A
|(ṽ1(1))X |

2 and
(ṽ2(0))X − (ṽ2(0))A
|(ṽ1(−1))X |

2

depend neither on X nor on k, and if L1(2) = L1(−2) = {1}, then the ratios

|(ṽ1(2))X |
|(ṽ1(1))X |

2 ,
|(ṽ1(2))X |
|(ṽ1(−1))X |

2 ,
|(ṽ1(−2))X |
|(ṽ1(1))X |

2 ,
|(ṽ1(−2))X |
|(ṽ1(−1))X |

2

and the differences

ϕ(ṽ1(2))X
− ϕ(ṽ1(1))X

and ϕ(ṽ1(−2))X
− ϕ(ṽ1(−1))X

do not depend on X.

Furthermore, if we define %
(k)
X and αX as proposed in Sect. 3.2 for a rota-

tionally invariant scheme, then we can scale the eigenvectors such that

(ṽ1(2))X = (ṽ1(1))
2
X , (ṽ1(−2))X = (ṽ1(−1))

2
X ,

and, if
∂2F
∂x2

(0, 0)− ∂2F
∂y2

(0, 0)∓ 2i
∂2F
∂x∂y

(0, 0) 6= 0 ,

then

∂2F
∂x2

(0, 0) +
∂2F
∂y2

(0, 0) = 4
P(2, 0)

n
,

∂2F
∂x2

(0, 0)− ∂2F
∂y2

(0, 0) =
8

n
< (P(1, 2)) =

8

n
< (P(1,−2)) ,

∂2F
∂x∂y

(0, 0) = − 4

n
= (P(1, 2)) =

4

n
= (P(1,−2)) .
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In conclusion, the necessary condition for C2-convergence is that among all
the eigenvalues of all M̃(ω), the global subsubdominant eigenvalues are the
subdominant eigenvalues of M̃(0) and the dominant eigenvalue of M̃(2) and
M̃(−2). These global subsubdominant eigenvalues are equal to the square of∣∣∣λ̃1(±1)

∣∣∣, the global subdominant eigenvalues. Furthermore, the elements of

the associated eigenvectors are in a quadratic configuration. These conditions
have been already proposed by Sabin [12] as a condition related to the C2-
continuity of the limit surface. They also let us get the values of the partial

derivatives ∂2F
∂x2 (0, 0), ∂

2F
∂y2 (0, 0) and ∂2F

∂x∂y (0, 0). See Barthe et al. [2] (pp. 245–

257 of this book) for a further discussion of the rôle of the eigenvalues.

4 Discussion

Many authors interpret a subdivision scheme as a linear map between patches
which progressively fill in an n-sided hole around an extraordinary point.
Prautzsch [9] and Zorin [16] proposed necessary and sufficient conditions for
Cp-regularity of the limit surface, on the eigenvalues and eigenbasis functions
of this linear map. In contrast, we interpret a subdivision scheme as a lin-
ear map between samplings of two successive surfaces from a sequence of Cp

surfaces. If this sequence converges with sufficient regularity (Cp-converges)
these samplings may be used to approximate the derivatives of the limit sur-
face. We propose necessary conditions for the C2-convergence of a scheme,
which is itself a sufficient condition for the C2-continuity of the limit surface,
on the eigenvalues and eigenvectors of the transformed subdivision matrix. As
already stated, a scheme which converges toward a C2-continuous limit sur-
face does not necessarily C2-converge. But it is interesting to understand the
difference between our necessary conditions for Cp-convergence, and the con-
dition for the Cp-regularity of the limit surface proposed by Reif, Prautzsch
and Zorin.

C0-regularity. We find the same conditions.
C1-regularity. Because we ask the subdominant eigenvalues to come from

M̃(1) and M̃(−1), we ensure the orthoradial injectivity of Reif’s charac-
teristic map as described in [8]; and because we ask the components of the

associated eigenvectors to be sorted like the parameters %
(k)
X , we ensure

good conditions for the radial injectivity of this map.
C2-regularity. Reif’s characteristic map [11] is given by the subdominant

eigenbasis functions. If the scheme is Box-Spline based, the eigenbasis
functions are Box-Splines with our eigenvectors as control points (more
precisely, our eigenvectors provide their radial coordinate). One of the con-
ditions proposed by Prautzsch [9] and Zorin [16] for C2-regularity, is that
the eigenbasis functions z associated to the subsubdominant eigenvalue
should belong to span

{
xiyj ; i+ j = 2

}
where x and y are the eigenba-

sis functions associated to the subdominant eigenvalue. Our condition is
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the same, but with the eigenvectors instead of the eigenbasis functions.
And the eigenvectors provide the altitude over the characteristic map of
the control points of z. Around an ordinary vertex, we have checked that
the quadratic configuration of the eigenvectors is fulfilled for Loop and
Catmull-Clark schemes. Stam does so for the quadratic configuration of
eigenbasis functions [15]. The possibility to get quadratic configuration of
both eigenvectors and eigenbasis functions around an extraordinary vertex
remains to be investigated.

5 Conclusion

We have proposed practical conditions for tuning a scheme in order to con-
trol its artifacts in the vicinity of a mark point. To do so, we look for good
behaviour of the limit vertices rather than good mathematical properties of
the limit surface. The good behaviour of the limit vertices is characterised
with the definition of C2-convergence of a scheme. We propose necessary ex-
plicit conditions for C2-convergence of a scheme in the vicinity of any mark
point being a vertex of valency greater or equal to three. We cast some light
on the relationship between these conditions and the classical necessary and
sufficient conditions for the C2-continuity of the limit surface. Even though
the differences between them are not large, we stress the fact that our condi-
tions are designed for tuning a scheme leading to fewer artifacts on the limit
surface [3] rather than for tuning a scheme leading to a C2-continuous limit
surface.
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