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ABSTRACT

Image compression for multi-view autostereoscopic displays is one of the major governing factors for the development
and acceptance of 3D technology. For example: the multi-view autostereo display developed at Cambridge uses
between six and twenty-eight distinct views of the scene, each view being a complete image of the scene taken from
a particular view point. Therefore it is of prime importance to use compression methods that would exploit the
redundancy present in the view-point direction to allow for 3D image communication since the images require a very
high bandwidth for transmission and a large amount of space for storage. In this paper an initial investigation on
how the third dimension can be utilised is presented. Entropy measures for multi-view images are derived. It is
shown that exploiting the similarities between views can give lower entropy, indicating higher compression rates. The
parallel axes geometry of the cameras used for the autostereo display produces only horizontal shifts between stereo
images, therefore investigation in using hierarchical row decomposition along with correlation and mean squared
error measures for estimating disparity shifts and reducing search spaces respectively are presented.
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1. INTRODUCTION

Image compression for multi-view autostereoscopic displays is one of the major governing factors for the development
and acceptance of 3D technology. These displays provide a 3D picture which can be viewed without the need for
any special glasses or other headgear. This is achieved by displaying a number of different, laterally-spaced views
of a scene so that each view is only visible in a limited angular segment in front of the screen. Autostereo display
technology thus gives a new dimension in image data – a view-point sequence of images.

The multi-view autostereo display1–4, developed at Cambridge employs a time-multiplexed system to produce a
multi-view autostereoscopic image. Each view is then displayed on a CRT and a dynamic optical system ensures that
each view is only visible in a single window in front of the display. It is able to display between six and twenty-eight
distinct views of the scene, each view being a complete image of the scene taken from a particular view point. To allow
for multi-view autostereo 3D image broadcast, transmission, and storage, a very high bandwidth for transmission
and a large storage space is required. High bandwidth can be tolerated for certain applications where the image
source and display are close together but, for long distance or broadcast, compression of information is essential. As
the number of views and the image size both increase the above problems get worse. Already the amount of data
required for the current 28-view display is causing data-handling problems. Therefore compression methods need to
be investigated for this technology to be feasible.

An initial investigation on the behaviour of the third dimension with respect to compression issues has been
carried out. Section 2 gives a brief review of the Cambridge autostereo display, other works on autostereo displays
and compression. Section 3 discusses entropy measures for multi-view images. Section 4 investigates hierarchical
row decomposition for estimating disparity shifts with respect to correlation and least mean squared error measures.
Section 5 summarises the work.
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Figure 1. An overview of an autostereo display system.

2. BACKGROUND

2.1. The Display

Three dimensional displays offer added realism over conventional 2D display devices. They are especially desirable
for visualisation and remote manipulation, where the extra dimension provides much need depth perception.

An autostereo display (see Figure 1) allows the viewer to see a true 3D picture. Each of the viewer’s eyes sees a
different image of the displayed scene, just as in real life, and the viewer can move his/her head to “look around”
objects in the scene. The result is autostereoscopic vision, and is perfectly natural because there is no need for any
special glasses or other headgear.

Over the last few years, a huge amount of work has been developed for displaying autostereo images. Some of the
methods proposed include parallax barrier5,6, lenticular sheets7,8 and multi-projector systems9. However all these
displays have certain constraints. For example: in the parallax barrier method, a slight movement of the observer
in the horizontal direction within the viewing zone will impair the image in terms of the light density while for
lenticular displays, the clear vision of the scene is interrupted due to the reflective light from a lenticular lens sheet.
Both the above technologies use spatial multiplexing thus increasing the horizontal resolution of the display. In a
multi-projector system, the number of views can be increased with an increase in the number of projectors since each
projector displays one view. Such a system can, however, become very expensive.

The Cambridge autostereoscopic display1–4 uses time-multiplexed system to produce a multi-view autostereo
image. These multiple pictures are flashed up on the CRT very quickly, one after another. At the same time as one
of the pictures is being displayed, one of a set of liquid crystal shutters is opened, making the picture visible to part
of the area in front of the display. The shutters determine where the observer can see each of the pictures. This
whole process is repeated very rapidly, sixty times a second. Each of the observer’s eyes thus sees a series of very
short, very bright image of one of the pictures. The eye integrates these short bursts of image to give the effect of a
continuously displayed picture.

Because each eye sees a different picture, the observer gets one of the important 3D depth cues: stereo parallax.
Because she sees different pictures when she moves her head, she gets another important 3D depth cue: movement
parallax. These two combine to give an effective illusion of real depth in the 3D image.

The multi-view images used in the display have been generated either by computer graphics or sourced by an
array of cameras. The cameras were arranged in a horizontal row, a suitable distance apart from each other. A
parallel configuration for mounting the cameras was adopted (see Figure 2). The reason for selecting the above
configurations was that the common viewplane was displayed on a single screen thus avoiding distortions. This
resulted in a good 3D effect with the depth of view limited to prevent view problems10,11.

2.2. Compression Overview

Several 3D displays have been developed to enhance the reality of visual communication through the provision of
natural depth sensation. For this technology to be realised issues such as image capture, image representation and



Common view plane

Figure 2. Camera geometry.

image compression need to be discussed. One of the major factors governing this technology is the acceptance of
multi-view compression.

It is known that current image compression techniques are applicable to 2D static images and time sequences
of images. These techniques could be applied to the individual views in a view-point sequence, however this would
not take advantage of the high degree of similarity between views. Most of the work to date on compression has
been for stereo images. The issues concerning stereo images such as disparity estimation, spatial correlation, MPEG
compatible coding issues, the human visual system and standard 2D image and video coding techniques can be
utilized for multi-view images.

One of the first published work on stereo compression methods was by Perkins12. He worked on a conditional
stereo pair coder structure which described a scheme that first coded one image of a stereo pair and then the other
based on the first. He also presented two compression techniques for stereo pairs. The first technique attempted
to minimise the mean squared error between the original stereo pair and the compressed stereo pair. The second
technique was based on the known facts of human stereovision to code stereo pairs in a subjectively acceptable
manner.

A few years on, a European project DISTIMA13, explored stereoscopic systems. The project developed a stereo-
scopic display based on twin projectors. The group worked on various factors dealing with coding and compression
of stereo images.

Research groups at the University of Tokyo have worked with different algorithms. In brief, Fujii et al14 showed
how a multi-view sequence can be reduced to a mesh structure (generated by placing vertices at points of minimum
variance) and a texture map (dependent on disparity estimation). Later on Naemura et al15 worked on improving
Fujii’s method. They used a 3D segmentation algorithm, before transforming the data into a mesh structure and
texture map.

Aydinoglu et al16 worked on coding the images using local orthogonal bases. They adopted two different frame-
works, a bidirectional predictive coding scheme and a unidirectional predictor. The actual coding was performed
using subspace projection technique and a locally adaptive incomplete transform approach. It was shown both the
frameworks were able to overcome problems related to occlusion.

A recent overview of 3D compression and representation is given by Naemura et al17.



3. THIRD DIMENSION INVESTIGATIONS WITH ENTROPY MEASURE

For autostereo images, it is wise to investigate how the third dimension can be utilised in compression. Many 2D
compression schemes treat a 2D image as a 1D stream of data. The order in which the 2D image data is input to the
1D compression algorithm can impinge on the compression ratio. With autostereo 3D imagery the extra dimension
allows for many more options. At its simplest, where a 2D image could be scanned as either (x, y) or (y, x), a 3D
image could be scanned up to six ways including (x, y, θ), (y, θ, x) and (θ, x, y). In addition, the behaviour of data
in the x and y dimensions can be expected to be similar, while in the θ dimension the data may behave in quite
a different manner. Thus to investigate how the behavior differs, zero order and first order entropy measures were
employed to see the amount of redundant information in each frame. Zero order entropy indicates the amount of
compression possible if each pixel is treated independently. First order entropy indicates the compression which is
possible if each pixels’ value is predicted from the previous pixel, where “previous” could mean previous of any one
of x, y or θ.

Experiments were carried out on different computer generated and real autostereo images. Due to space limita-
tions, only the results for the computer generated sequence known as Granny are discussed here. A single frame of
the Granny sequence (which has 14 views in the view point direction) was considered.
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Figure 3. Images from a single frame Granny sequence.

Figure 3 shows the first and second views of the Granny single frame sequence.
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Figure 4. Two different possibilities of scanning the x, y and θ dimensions: a) view by view b) layer by layer.

The first experiment compared view with view (see Figure 4a), to ascertain how good a predictor one view is for
the next. Figure 5 shows the entropy measure for a single view sequence. It can be seen that the entropy varies in
small steps between consecutive views implying that a large amount of information can be discarded giving good
compression. It should be noted that the difference between two views increases as the distance between views
increases. If a lossless encoding method were to be utilised it would be best to code each view with respect to the
previous view, rather than with respect to the first view.
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Figure 5. Entropy measure of a single frame(14 views) of the Granny sequence.

There is however no guarantee that the θ dimension contains the greatest redundancy. Therefore the second
experiment compares “layer” with layer, where a layer consists of a single row taken from all views (see Figure 4b).
Figure 6 shows results from this experiment. It is observed that the entropy measure in the y dimension is very
small, as seen in the top left graph, suggesting the possibility of a greater degree of compression compared to the
previous results. The remaining three graphs show small portions of the layers and it is seen, for example, in the
bottom left graph, that the first order entropy of the first few layers is relatively small since there is not much motion
information in the first few rows of the views (see Figure 3).
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Figure 6. Entropy measure in the y dimension for Granny sequence.

These experiments show that there is better coherence between layers than views. Therefore, naively using one
view to predict the next is not going to be as good as simply predicting within a view. However we know that there
is a disparity shift between views, thus from our knowledge we now consider estimating disparity shifts within a view
and between views, using different search space measures.

4. ESTIMATION OF DISPARITY SHIFTS

Differences in images of the real and computer generated scenes may be caused by 1) the relative motion of the
camera and the scene, 2) the relative displacement of the cameras or 3) the motion of objects in a scene. These



differences are important because they encode information that often allows a partial reconstruction of the 3D scene
structure from 2D projections. Such differences between two images can be represented as a vector field mapping
one image onto another. An example can be found in Figure 7.
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Figure 7. Delta shift between images 1 and 2 for row no. 110 where image 1 is represented by a line (—) and image
2 by line segments (- -).

Matching between the sets of points from two images gives rise to two important issues. Firstly, how to select
points for matching and secondly how to determine which matches are correct. In this section the above issues are
discussed with respect to space search measures and hierarchical row decomposition.

4.1. Search space measures

Search space measures are measures of similarity, they work by considering a small region in image 1 which surrounds
an interesting point, a search is then made in image 2 for the region of maximum similarity. The two measures
compared are the correlation measure and least mean square error.

Correlation measure (CM):

In correlation based measurements, the elements to match are image windows of fixed size, the similarity criterion
is a measure of the correlation between the windows in the two images. The best match element is given by the
window that maximises the correlation within the search region.

Experiments were carried out for the Granny images. A maximum of a 50 pixel search region in image 2 with
respect to the reference image 1 was considered. The outcome showed that most of the difference was within [-4,4]
pixel range. At some positions other than the true match positions, spikes were observed which indicated false
matches. In the next set of experiments, correlation between rows from images 1 and 2 were obtained and this
proved to give better results as well as better entropy values. Figure 8 shows the correlation vs delta shift between
the images for a specific row. It is observed that the maximum correlation value lies near the origin (at a pixel shift
of 2) proving that the difference between the two views lies within the specified pixel range.

In the following simulation, use of windows of size (1x16) and (1x8) were employed and the correlation between
rows was found. It was observed that using a (1x16) window did not give good matches since the information to
be compared with was too varied. Good matches were obtained from a (1x8) window. For both the experiments, a
search space of (1x24) pixels was used. Figure 9 shows the outcome for a specific row.

Least mean square error measure (LMSE):
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Figure 8. Correlation measure wrt. delta shifts for row 110 between images 1 and 2. Note that the maximum
correlation value is at a pixel shift of 2 thus a true match for row 110 of image 2 is obtained by shifting the
corresponding row of image 1 by 2 pixels.
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Figure 9. Correlation measure and the best match between images 1 and 2 for row 110.

The process of searching matching regions between images frequently leads to spurious matches. The measure of
a successful match is an error measure between image 1 and the selected subpart of image 2. The mean-square error
is thus defined by:

E(Î2, I1) = 1/N × M
∑

N−1

∑
M−1((Î2 − I1)2)

where I1 is the reference image and Î2 is the estimated image.

Similar sets of experiments were performed, the outcome is shown in Figure 10. It was concluded that a window
of size (1x8) gave the best results.

Finally, entropy measures were calculated for delta shift and the closest matches as shown in Table 1. As observed
the LMSE measure works a fraction better than the CM measure.
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Figure 10. Mean square measure and the best match between images 1 and 2 for row 110.

We now consider ways of combining disparity estimation with our knowledge that there is often good correlation
between layers.

4.2. Hierarchical row decomposition (HRD)

Hierarchical row decomposition attempts to combine the advantages of large similar blocks with those of single rows.
The reliability of matching is influenced by block size. Large blocks are more likely to track overall movement than
small ones and hence are less likely to converge on local minima or maxima depending on the search space measure
used. Although such matches are reliable, the quality of matches for large blocks may not be as good compared to
small blocks. Thus hierarchical row decomposition exploits these factors to obtain an overall better match between
two images.

The HRD algorithm initially starts by finding the correlation coefficient between two lines of image 2 ( i.e. the
image that is to be matched with reference image 1). If the coefficient value is greater than a specified threshold,
then the two rows are combined to form one block. The resulting block is then correlated with the next row and
depending on the value obtained, may be adjoined with the block or not. For the experiments a threshold value of
0.95 was used. The final outcome for Granny image 2 is shown in Figure 11. The top graph in the figure shows
the blocks, in black, obtained using a threshold of 0.95. In the second graph, the block correlation coefficients are
displayed. It is observed that all the true matches lie between [-4 4] pixel range.

Combining this technique with search space measures to detect local matches, significant results in terms of
entropy and matching were obtained. This is due to the similarity between and within rows of consecutive images.

Figures 12 and 13 show the frequency distribution of greyscale and delta shift with respect to search space
measures. It can be seen that the range for the greyscale and the delta shift both lie near the origin indicating a
possibility of a high degree of compression. These results can be verified from Table 1.

Finally, Figure 14 gives a comparison of the HRD match with respect to CM and LMSE methods. As can be
seen both the methods have estimated closely to the original reference image.

To prove that these issues are relevant to other images, entropy measures were calculated (see Table 2) for the
Porsche car sequence shown in Figure 15.

5. CONCLUSION AND FUTURE WORK

This paper has investigated how the third dimension can be utilised and its effect on information loss and compression.
It has been shown that exploiting the similarities between views gives lower entropy, indicating higher compression
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Figure 11. Outcome of row decomposition algorithm, showing blocks in black obtained using 0.95 correlation
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range.
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Figure 12. Frequency and delta shift distribution for images 1 and 2 for blocks and lines wrt. correlation measure.

rates. The parallel axes geometry of the cameras produces only horizontal shifts in images. Therefore hierarchical
row decomposition and search space measures can be employed as a means of selecting points for matching, to find
areas and finally to assess potential for data compression. It was found that using the search space methods and
windows of size (1x8) gave the lowest entropy values indicating the likely possibility of high compression.

These preliminary results indicate that multi-view point sequences of images can be coded efficiently. Future
work will involve automatic generation of intermediate images in the sequence and the investigation of lossy image
compression methods.
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Figure 13. Frequency and delta shift distribution for images 1 and 2 for blocks and lines wrt. least mean square
measure.

Correlation Measure LMSE Measure
Matching Criteria Matching Entropy Shift Entropy/8 Matching Entropy Shift Entropy/8
Full Image:
wrt. row 4.7803 1.9298 4.7893 1.9298
wrt. window (1x8) 3.7374 3.0561 3.3717 2.7387
Decomposed Image:
wrt. blocks 4.5849 1.9674 4.5849 1.9674
wrt. row 4.9394 1.7468 4.9597 1.7468
wrt. window (1x8) 3.9600 3.0463 3.5956 2.7393

Table 1. Entropy Measure for Granny images.
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