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Abstract. A family of interpolating 3-point ternary subdivision
schemes is shown to exist and have C1-continuity. A family of interpo-
lating 4-point ternary subdivision schemes is shown to exist and have
C2-continuity. An approximating 3-point ternary scheme has been
found and shown to have C2 continuity. An approximating 3-point
binary scheme is derived and shown to have C3 continuity. The gen-
erating function formalism is used to analyze the continuity properties
of these schemes. These are compared with the established schemes.

§1. Introduction

Most work in the area of subdivision schemes has considered binary schemes
with an even number of control points. Following a similar argument to
that used in [2], we decided to investigate schemes with an odd number
of control points, specifically 3-point schemes. This led to a more general
investigation of ternary subdivision schemes.

For symmetry reasons, it is obvious that an interpolating binary sub-
division scheme which utilizes the closest k points, for k odd, reduces to
a scheme which utilizes just the closest k − 1 points, k − 1 even. There is
thus no 3-point interpolating binary subdivision scheme. Ternary subdivi-
sion, on the other hand, does allow for an interpolating 3-point subdivision
scheme. A family of such schemes has been shown to exist and have C1

continuity. Further investigation led to discovery of a family of interpo-
lating 4-point ternary subdivision schemes which have C2 continuity [6].

Investigation of approximating 3-point schemes has led to two inter-
esting subdivision schemes. An approximating 3-point ternary scheme has
been found and shown to have C2 continuity. An approximating 3-point
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Interpolating
Scheme Continuity Mask
2-point C0 1

2 [1, 2, 1]
4-point C1 1

16 [−1, 0, 9, 16, 9, 0,−1]
6-point C2 [θ, 0,−3θ − 1

16 , 0, 2θ + 9
16 , 1,

2θ + 9
16 , 0,−3θ − 1

16 , 0, θ]
Approximating

2-point C1 1
4 [1, 3, 3, 1]

3-point* C3 1
16 [1, 5, 10, 10, 5, 1]

Tab. 1. Table showing results for binary schemes, where 0 < θ < 0.02.
* Indicates schemes presented and analyzed in this paper.

binary scheme, which uses corner-cutting similar in spirit to the 2-point
scheme 1

4 [1, 3, 3, 1], can be derived and shown to have C3 continuity. Both
schemes are presented in full.

We have investigated these schemes using the generating function
formalism, which lends itself well to deriving sufficient conditions for sub-
division schemes to be Ck. For binary schemes the subdivision step can
be compactly written in a single equation

pi+1
j =

∑

k∈Z
α(2k−j)p

i
k, (1)

and similarly for ternary schemes

pi+1
j =

∑

k∈Z
α(3k−j)p

i
k, (2)

where α = (αj) is the mask of the scheme and pi are the set of points after
the ith subdivision step. The principal results for the binary schemes are
shown in Table 1 and can be compared with those for ternary schemes,
shown in Table 2. Further analysis of the new schemes presented here,
including the derivation of their exactness class, approximation order, and
Holder exponent is given in [5].

The results for the 2-point interpolating schemes are trivial. [6] shows
the derivation of the ternary 4-point interpolating scheme. [4] derives the
results for the binary 4-point interpolating scheme and [8] derives the re-
sults for the binary 6-point interpolating scheme. Chaikin first proposed
the binary 2-point approximating scheme in [1], which was shown to pro-
duce the quadratic b-spline at the limit [7] and it can be shown that
the ternary 3-point approximating scheme produces the cubic B-spline at
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Interpolating
Scheme Continuity Mask
2-point C0 1

3 [1, 2, 3, 2, 1]
3-point* C1 [a, 0, b, 1− a− b, 1, 1− a− b, b, 0, a]
4-point C2 [a3, a0, 0, a2, a1, 1, a1, a2, 0, a0, a3]

Approximating
3-point* C2 1

27 [1, 4, 10, 16, 19, 16, 10, 4, 1]

Tab. 2. Table showing results for ternary schemes where a = b − 3
9 ,

a0 = − 1
18 − 1

6µ, a1 = 13
18 + 1

2µ, a2 = 7
18 − 1

2µ, a3 = − 1
18 + 1

6µ, and
2
9 < b < 3

9 ,
1
9 < µ < 1

15 . * Indicates schemes presented and analyzed
in this paper.

the limit and that the binary 3-point approximating scheme produces the
quartic B-spline.

In the following we will describe the generating function formalism
and how it is used to derive continuity.

§2. Generating Function Formalism

2.1 Binary Schemes

From the method of Dyn [3], we see that the subdivision step for binary
schemes can be expressed in the generating function formalism as a simple
multiplication of the corresponding symbols:

P i+1(z) = α(z)P i(z2), (3)

where
P i(z) =

∑

j

pijz
j , α(z) =

∑

j

αjz
j .

Sufficient conditions for Ck

Now we will state sufficient conditions for a binary scheme to be Ck. The
proof is given in [3].

For any given binary subdivision scheme, S, with a mask α satisfying
(4), we can prove S∞P 0 ∈ Ck by first deriving the mask of 1

2Sk+1 and
then computing ||( 1

2Sk+1)i||∞ for i = 1, 2, 3, . . . L, where L is the first
integer for which ||( 1

2Sk+1)L||∞ < 1. If such an L exists and the mask of
Sl satisfies (4) ∀l ≤ k then S∞P 0 ∈ Ck.

∑

j∈Z
α2j = 1,

∑

j∈Z
α2j+1 = 1. (4)
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∣∣∣∣
∣∣∣∣
1

2
Sk+1

∣∣∣∣
∣∣∣∣
∞

=
1

2
max


∑

j∈Z

∣∣∣α(k+1)
2j

∣∣∣ ,
∑

j∈Z

∣∣∣α(k+1)
2j+1

∣∣∣




where
2z[α(k)(z)] = [α(k+1)(z)](1 + z)

⇒ 2α
(k)
i = α

(k+1)
i−1 + α

(k+1)
i

2.2 Ternary Schemes

Again following the method of Dyn [3], after some computation, we see
that the subdivision step for ternary schemes can be expressed in the gen-
erating function formalism as a simple multiplication of the corresponding
symbols:

P i+1(z) = α(z)P i(z3), (5)

where

P i(z) =
∑

j

pijz
j , α(z) =

∑

j

αjz
j .

Sufficient Conditions for Ck

Now we will state sufficient conditions for a ternary scheme to be Ck. The
proof is given in [6].

For any given ternary subdivision scheme, S, with a mask α satisfying
(6), we can prove S∞P 0 ∈ Ck by first deriving the mask of 1

3Sk+1 and
then computing ||( 1

3Sk+1)i||∞ for i = 1, 2, 3, . . . L, where L is the first
integer for which ||( 1

3Sk+1)L||∞ < 1. If such an L exists and the mask of
Sl satisfies (6) ∀l ≤ k then S∞P 0 ∈ Ck.

∑

j∈Z
α3j = 1,

∑

j∈Z
α3j+1 = 1,

∑

j∈Z
α3j+2 = 1. (6)

∣∣∣∣
∣∣∣∣
1

3
Sk+1

∣∣∣∣
∣∣∣∣
∞

=
1

3
max


∑

j∈Z

∣∣∣α(k+1)
3j

∣∣∣ ,
∑

j∈Z

∣∣∣α(k+1)
3j+1

∣∣∣ ,
∑

j∈Z

∣∣∣α(k+1)
3j+2

∣∣∣




where
3z2[α(k)(z)] = [α(k+1)(z)](1 + z + z2)

⇒ 3α
(k)
i = α

(k+1)
i−2 + α

(k+1)
i−1 + α

(k+1)
i
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§3. Approximating 3-point Binary Subdivision

3.1 Continuity

This scheme can be easily derived from the quartic B-spline. Here we
take a different approach. We start from the general form of a binary 3-
point subdivision scheme. We then apply continuity requirements in order,
showing that the quartic B-spline scheme is the only scheme of this type
which has C3-continuity, but that there are an infinite range of schemes
with lower continuity.

There is no point in having a 3-point interpolating binary scheme, as
such a scheme would reduce to the 2-point scheme: 1

2 [1, 2, 1]. However, a
3-point approximating binary scheme may be possible. This would be a
corner-cutting scheme similar to the 2-point scheme: 1

4 [1, 3, 3, 1]. Its mask
is

α = [a, b, 1− a− b, 1− a− b, b, a]

For C0 continuity we require that the mask satisfy (4), which it does,
and

∣∣∣∣ 1
2S1

∣∣∣∣
∞ < 1.

α(1) = 2[. . . , 0, 0, a, b− a, 1− 2b, b− a, a, 0, 0, . . .] (7)

⇒
∣∣∣∣
∣∣∣∣
1

2
S1

∣∣∣∣
∣∣∣∣
∞

= max (|1− 2b|+ 2|a|, 2|b− a|) < 1 (8)

For C1 continuity we require that α(1) satisfy (4), which implies that
b = a+ 1

4 , and also
∣∣∣∣ 1

2S2

∣∣∣∣
∞ < 1.

α(2) = 4[. . . , 0, 0, a,
1

4
− a, 1

4
− a, a, 0, 0, . . .] (9)

⇒
∣∣∣∣
∣∣∣∣
1

2
S2

∣∣∣∣
∣∣∣∣
∞

= 2|a|+ 2

∣∣∣∣
1

4
− a
∣∣∣∣ < 1 (10)

For C2 continuity we require that α(2) satisfy (4), which is true, and
also

∣∣∣∣ 1
2S3

∣∣∣∣
∞ < 1.

α(3) = 8[. . . , 0, 0, a,
1

4
− 2a, a, 0, 0, . . .]

⇒
∣∣∣∣
∣∣∣∣
1

2
S3

∣∣∣∣
∣∣∣∣
∞

= max (|8a|, |1− 8a|) < 1

which implies that 0 < a < 1
8 .

For C3 continuity we require that α(3) satisfy (4), which implies that
a = 1

16 , which incidentally meets the criterion in equations (8) and (10),
and also

∣∣∣∣ 1
2S4

∣∣∣∣
∞ < 1.
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α(4) = [. . . , 0, 0, 1, 1, 0, 0, . . .]

⇒
∣∣∣∣
∣∣∣∣
1

2
S4

∣∣∣∣
∣∣∣∣
∞

= max

(
1

2
,

1

2

)
< 1

To go to C4 continuity we require that α(4) satisfy (4), which it does,
and also

∣∣∣∣ 1
2S5

∣∣∣∣
∞ < 1, which it does not:

α(5) = 8[. . . , 0, 0, 2, 0, 0, . . .]

⇒
∣∣∣∣
∣∣∣∣
1

2
S5

∣∣∣∣
∣∣∣∣
∞

= 1

Thus the limit curve for the binary scheme with the mask α =
1
16 [1, 5, 10, 10, 5, 1] has C3 continuity.

§4. Interpolating 3-point Ternary Subdivision

4.1 Continuity

For this scheme we have

α = [. . . , 0, 0, a, 0, b, 1− a− b, 1, 1− a− b, b, 0, a, 0, 0, . . .] (11)

α(1) = 3[. . . , 0, 0, a,−a, b, 1− 2b, b,−a, a, 0, 0, . . .] (12)

It is easy to verify that α satisfies (6).
If

∣∣∣∣
∣∣∣∣
1

3
S1

∣∣∣∣
∣∣∣∣
∞

= max (|1− 2b|+ 2|a|, |a|+ |b|, |a|+ |b|) < 1 (13)

then this scheme has C0 continuity.
Now for C1 continuity we first need α(1) to satisfy (6). This implies

a = b− 1

3
. (14)

and so we have

α(1) = 3[. . . , 0, 0, b− 1

3
,

1

3
− b, b, 1− 2b, b,

1

3
− b, b− 1

3
, 0, 0, . . .]

α(2) = 9[. . . , 0, 0, b− 1

3
,

2

3
− 2b, 2b− 1

3
,

2

3
− 2b, b− 1

3
, 0, 0, . . .]

If
∣∣∣∣
∣∣∣∣
1

3
S2

∣∣∣∣
∣∣∣∣
∞

= max

(
9

∣∣∣∣b−
1

3

∣∣∣∣ , 9
∣∣∣∣b−

1

3

∣∣∣∣ , 3
∣∣∣∣2b−

1

3

∣∣∣∣
)
< 1 (15)
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then we have C1 continuity.

2

9
< b <

3

9
, a = b− 3

9

satisfies (13) and (15).
For C2 continuity we would require α(2) to satisfy (6). This implies

b = 2
9 , but with this value

∣∣∣∣ 1
3S2

∣∣∣∣
∞ = 1. For b = 2

9

α(2) = [. . . , 0, 0,−1, 2, 1, 2,−1, 0, 0, . . .]

(α(2))2 = [. . . , 0, 0, 1,−4, 2, 0, 11, 0, 2,−4, 1, 0, 0, . . .]

Hence
∣∣∣
∣∣∣
(

1
3S2

)2∣∣∣
∣∣∣
∞

= 19
9 . Furthermore it can be shown that

∣∣∣∣
∣∣∣∣
(

1

3
S2

)n∣∣∣∣
∣∣∣∣
∞
> 1 ∀n ∈ N.

Thus there is no C2 3-point interpolating ternary subdivision scheme.
Hence a C1 ternary 3-point interpolating subdivision scheme can be

defined by (11), where 2
9 < b < 3

9 and a = b− 1
3 .

§5. Approximating 3-point Ternary Subdivision

5.1 Continuity

There are several ways to arrive at this scheme. One is through the gen-
erating function formalism as followed above, another method is to use
the matrix formalism, and finally it can be arrived at from the cubic B-
spline itself. Here we will just prove the continuity of the scheme using
the generating function formalism.

For this scheme we have

α =
1

27
[. . . , 0, 0, 1, 4, 10, 16, 19, 16, 10, 4, 1, 0, 0, . . .]

α(1) =
1

9
[. . . , 0, 0, 1, 3, 6, 7, 6, 3, 1, 0, 0, . . .]

It is easy to verify that α satisfies (6).

∣∣∣∣
∣∣∣∣
1

3
S1

∣∣∣∣
∣∣∣∣
∞

= max

(
1

3
,

1

3
,

1

3

)
< 1

Hence this scheme has C0 continuity.

nad10
* this vector is incorrect in the printed version, see the footnote for the corrected version

nad10
* the correct vector is: [...,0,0,1,-2,-1,-4,5,2,3,0,1,0,3,2,5,-4,-1,-2,1,0,0,...]

nad10
* likewise, this value is 1, not 19/9

nad10
* and the greater than sign should be greater than or equal to
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Fig. 1. Fundamental functions for the binary schemes. Top to bottom: 2-point
interpolating, 4-point interpolating, 6-point interpolating (θ = 0.01),
2-point approximating, 3-point approximating.

Fig. 2. Fundamental functions for the ternary schemes. Top to bottom: 2-point
interpolating, 3-point interpolating (b = 5/18), 4-point interpolating
(µ = 4/45), 3-point approximating.
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Now for C1 continuity we first need α(1) to satisfy (6), which it does.
Now

α(2) =
1

3
[. . . , 0, 0, 1, 2, 3, 2, 1, 0, 0, . . .]

⇒
∣∣∣∣
∣∣∣∣
1

3
S2

∣∣∣∣
∣∣∣∣
∞

= max

(
1

3
,

1

3
,

1

3

)
< 1

Hence this scheme has C1 continuity.
Now for C2 continuity we first need α(2) to satisfy (6), which it does.

Now
α(3) = [. . . , 0, 0, 1, 1, 1, 0, 0, . . .]

⇒
∣∣∣∣
∣∣∣∣
1

3
S3

∣∣∣∣
∣∣∣∣
∞

= max

(
1

3
,

1

3
,

1

3

)
< 1

Hence this scheme has C2 continuity.
Now for C3 continuity we first need α(3) to satisfy (6), which it does.

But

α(4) = 3[. . . , 0, 0, 1, 0, 0, . . .]

⇒
∣∣∣∣
∣∣∣∣
1

3
S3

∣∣∣∣
∣∣∣∣
∞

= max (1, 0, 0) ≥ 1

(α(4))2 = 9[. . . , 0, 0, 1, 0, 0, . . .]

⇒
∣∣∣∣∣

∣∣∣∣∣

(
1

3
S3

)2
∣∣∣∣∣

∣∣∣∣∣
∞

= max (1, 0, 0) ≥ 1

Hence this scheme does not have C3 continuity.

§6. Examples and Conclusion

We have used the generating function formalism to analyze the continuity
properties of univariate ternary and binary subdivision schemes. Figures 1
and 2 show the fundamental functions for all the schemes shown in Tables
1 and 2. We can see from these figures that, for interpolating schemes, the
ternary schemes have a smaller support than their binary counterparts.

These results show that we can achieve higher smoothness and smaller
support for interpolatory schemes by going from binary to ternary. More
work needs to be done to see if this trend continues for higher arities.
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