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Abstract 

The Free-Form Deformation (FFD) methods are a family of intuitive, efficient and 
versatile free-form modelling techniques, which rely on an ambient warp of the 
space cocooning an embedded object. However, the distortion caused by FFD 
significantly degrades the approximation quality of polygon-mesh objects. We 
present a curvature-based adaptive refinement and decimation algorithm which 
solves this problem in the context of repeated interactive FFD and improves on 
previous work [22, 13, 211 in three respects: it addresses sampling issues, incor- 
porates decimation as well as refinement, and reduces computational complexity. 

1 Introduction 
The field of aesthetic free-form modelling (or interactive sculpting as it is sometimes called) 
addresses the task of computer-assisted shape design. It is distinguished from structured mod- 
elling techniques such as Constructive Solid Geometry, Primitive Instancing and Generalized 
Cylinders [lo] by permitting unrestricted manipulation of an object’s surface. Also, the aes- 
thetic appearance of the final form is the only concern and no consideration is given to func- 
tional properties such as volume, tensile strength and aerodynamics. 

There is considerable research into adapting physically-based methods to free-form mod- 
elling [26]. This approach allows a user to deform a solid in a physically realistic (and hence 
intuitive) fashion, since it directly incorporates mechanics, but it is memory and computation 
intensive. More recently this inefficiency has been reduced through a range of restrictions 
[4, 19,231. 

At the other end of the complexity spectrum are the Regular Deformations [ 11. These 
are extremely efficient but of limited utility since they offer only specific stylized deformations 
- taper, twist and bend. 

Between these extremes lies Free-Form Deformation (FFD) and its extensions, a family 
of highly intuitive, powerful and efficient modelling techniques, which rely on an ambient warp 
of the space containing an embedded object. An analogy [25] would be setting a deformable 
shape inside a block of jelly of the same consistency and then flexing this jelly, resulting in 
a corresponding distortion of the inset shape. FFD has other strengths apart from efficiency: 
it can always be applied as long as sample points can be extracted from an embedded object 
and is thus independent of the object’s underlying representation, and it can be either local or 



global in effect depending on the scope of the deformation relative to the object. 
FFD in its seminal form [25] employed a Btzier hyperpatch (the three- dimensional 

analogue of a two-dimensional Bizier patch) in an initial parallelepiped configuration to de- 
marcate a deformable portion of world co-ordinate space. This has since been generalized to 
hyperpatches on different bases [13, 8, 171 and with generalized topologies [6, 181. FFD has 
also found widespread application in modelling [ 14.8, 111 and animation [5, 7, 161. In all of 
these, deformation is controlled by repositioning control points (much as in curve and surface 
design). Unfortunately, this interface is cumbersome and counter-intuitive [ 15) as display of 
the lattice (control points connected in a grid) tends to clutter the screen and obscure the object 
being created. Even worse, some lattice control points may be hidden within the object. It 
would be preferable if the user could drag object points directly and have the hyperpatch alter- 
ations necessary to induce these effects automatically calculated. This is the principle behind 
the direct manipulation extensions to FFD [3, 151. 

Rendering objects which have undergone FFD is problematic. Lf Polygon Scan Con- 
version is employed then a continuous object should be approximated in polygon-mesh form 
prior to FFD. The primary difficulty is that this approximation degrades under FFD, as pre- 
viously fiat (and sparsely coveted) regions become sharply undulating. Conversely, highly 
curved areas may be warped to near planarity and be wastefully oversaturated with polygons. 
These problems can be avoided by coupling an adaptive polygon-mesh refinement and decima- 
tion scheme to FFD. The conversion to polygon-mesh form prior to FFD is motivated by two 
concerns: a clean separation between the refinement/decimation scheme and the underlying 
representation (be it B-spline, implicit or CSG), and the ability to efficiently apply a possibly 
lengthy sequence of deformations to the object in an interactive modelling context. 

There are currently three FFD rendering algorithms, but all have shortcomings with re- 
spect to repeated interactive deformation. 

Greissmair and Purgathofer [13] take a triangle-element polygon-mesh and subdivide 
adjacent triangles at the midpoint of their common edge by examining the position of this 
midpoint after FFD. This approach is efficient but lacks symmetry, since only refinement is 
provided. This implies that under a sequence of deformations the object’s complexity may 
grow without bound even if its overall curvature decreases. 

Parry [22] subdivides triangles in a polygon-mesh based on a combination of their curva- 
ture and projected screen size. One edge in every triangle is heuristically identified as a “long 
side”. Subdivision of an edge may only take place if it is marked as a “long side” by both 
adjacent faces, otherwise the surrounding triangles are recursively subdivided until this con- 
dition is satisfied. This process is more computationally costly than Greissmair’s algorithm, 
may initiate unnecessary refinement and also lacks symmetrical decimation. 

Nimscheck [21] adapts an advancing front finite element mesh generation algorithm to 
the rendering problem. The input is a completely general polygon-mesh with both convex and 
concave polygons and any number of holes piercing the object. The output is a triangulated 
approximation, which is within a user-specified tolerance of the “true” object under FFD. This 
power and generality comes at the expense of efficiency and this technique is not suitable for 
real-time applications [2 I]. 

This paper presents an adaptive refinement and decimation scheme that is based on the 
research of Greissmair [ 131 and Nimscheck [2 I] and tailored to repeated interactive FFD. Our 
contributions are as follows: 

1. We incorporate a complimentary decimation process which merges faces in nearly pla- 
nar areas and thereby reduces the polygon-mesh complexity (number of vertices, edges 
and faces). 



2. We trigger refinement or decimation by testing the deviation between surface normals 
at edge endpoints (adapted from [2 I]). As will be shown, this has efficiency advantages 
over Greissmair’s midpoint displacement condition [ 131. 

3. We identify and develop measures to ameliorate the serious sampling problems associ- 
ated with refinement and decimation under PPD. 

The remainder of this paper is divided into three sections: The notation and mechanism 
of Free-Form Deformation arc explained, with particular reference to a uniform B-spline basis; 
a method for evaluating the change in first derivative properties under FFD is then described 
and, finally, our adaptive refinement and decimation algorithm is outlined and discussed. 

2 Free-Form Deformation 
Free-Form Deformation is a modelling tool which warps the space surrounding an object and 
thereby transforms the object indirectly. This is achieved by imposing a parametric hyperpatch 
onto a portion of world co-ordinate space and linking distortions in the hyperpatch to object 
vertices. 

FFD can be formulated as a mapping, 3: R3 H !JIs H Rs, from world space, through the 
local parameter space of the hyperpatch, to deformed world space. Thus a vertex S = (2, y, z) 
is mapped to parameter space as U = (11, u, UJ) and transformed under deformation back to 
world space as ,y = (3, g, E). This is achieved by two functions: the embedding, F(U) = S, 
and deformation, p(U) = ,r’, functions. The composition of F and F-’ constitutes FFD: 
3(S) = F(F-‘(A-)) = F(U) = x. 

The agency of deformation is a hyperpatch, defined as a trivariate piecewise parametric 
tensor product volume. This is a straightforward extension of one-dimensional curves to three 
dimensions. The curve control polygon which indicates the adjacency of control points gen- 
eralizes to a control lattice. Likewise, just as curves may be divided into piecewise segments 
(on a subinterval of the univariate domain), so too a hyperpatch may be broken into cells (each 
defined over a parallelepiped block of the trivariate I/’ domain). Points which lie within the hy- 
perpatch can be formulated as a sum of control points weighted by polynomial basis functions, 
as follows: 

n+l-1 b-m-1 c+n-1 

Q = F(ll, us u7) = C C C Bi,l(zl) . Bj,m(v) ’ Bk,,n(u’) * Pi,j,k (1) 
i=O j=O k=O 

where Q is a point within the hyperpatch and 0’ = (IL, u, UT) are its local parameter space co- 
- ordinates. B are the basis functions (the first subscript denotes the index and the second the 

order) and P are the lattice control points. 
With this background in place, FFD proceeds in three stages: 

1. Object vertices which fall within the undistorted hyperpatch are assigned parametric 
U, U, u! co-ordinates (F-’ is applied). In terms of our earlier metaphor, the shape being 
deformed is set inside the jelly. 

2. A number of control points are displaced (P become P), with a consequent distortion of 
the hyperpatch. This equates to flexing the jelly. 

3. Equation 1 (F in the FFD notation) is applied repeatedly to all of the parametrised object 
vertices to produce a deformed version of the object. So, by the analogy, the inset shape 
is warped along with its cocooning jelly, 
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Figure 1: A two-dimensional cubic B-spline area with a single cell and an embedded vertex: 
[A] pre-deformation, [B] post-deformation. 

A specific example will help to clarify the Free-Form Deformation process. If interactiv- 
ity is an overriding concern, then the use of uniform cubic B-splines is appropriate. A uniform 
knot sequence ensures that all basis functions are shifted versions of each other and their eval- 
uation is thus amenable to optimization. Also, if the initial (undistorted) lattice consists of 
control points evenly spaced in a parallelepiped configuration, and the parameter and world 
co-ordinate systems are aligned (ie. the G, v’, Ut axes of the hyperpatch match the ;c’, y’( 2’axes 
exactly), then due to the linear precision property of B-splines [9] the embedding of vertices is 
immediate (S = 0’ and F-’ is unnecessary). 

This form of FFD is illustrated in a two-dimensional analogue by figure 1. In figure 1 A 
the lattice is shown in its initial base-state together with an associated cell and an embedded 
vertex. If the control point positions are altered, then the cell which they define is deformed 
from its initial box-shape and so too is the object vertex (see figure 1B). 
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Figure 2: A FFD lattice showing deformable, influenced and phantom zones. 

There are two further issues concerning this style of FFD which should be mentioned: 

l There may be cells whose control points are unaltered and which do not perturb object 
vertices which fall within them. Instead of applying FFD only to have the original 
point return unchanged, a bit index, which flags cells with altered control points, can be 
consulted. In this way, if a control point is moved, then the cells that it influences are 
marked in the index. 



l The fringes of the lattice may, without careful attention, produce anomalous continuity 
degradation. To prevent this, the lattice is partitioned into three shells (figure 2). At the 
centre is the deformable zone, with any number of control points and their corresponding 
cells. Around this lies the influenced zone, which is affected by the movement of control 
points in the deformable zone and is two cells thick. At the edges a single-layered 
phantom zone of static control points guards against boundary conditions (as outlined 
by Bartels et al. [2]). These phantom vertices are preferred to the tripling up of vertices 
previously proposed by Hsu et al. [ 151, which introduces additional complexity into the 
FFD algorithm. 

3 First Derivative Properties 
It is vital in certain instances to compute not only the new position of object vertices, but also 
their first derivative properties (normal and tangents). These provide finer detail of an object’s 
shape and are useful for rendering algorithms (such as Phong shading [lo]) and curvature- 
based adaptive refinement and decimation, as developed here. 

The Contravariant and Covariant transformation rules [20] provide a means of mapping 
tangents and normals under general transformations of the form, G : R3 H R3. These can 
be adapted to FFD, and after some algebraic manipulation (including the discarding of scaling 
factors), this produces the FFD transformation rules: 

Covariant: iv,: = (J - Py - Nx 
Con travarian t: TX = J* . J -7” (2) 

Here J and J are the Jacobians of F and I?’ respectively. The superscript star (eg. J*) denotes 
the adjoint of a matrix. TX, T,q and N X, N,v am the tangents and normals before and after 
deformation. 

The optimized version of FFD outlined in the previous section (a uniform cubic B-spline 
basis combined with a parallelepiped axis-aligned initial lattice) allows these transformation 
rules to be further simplified: 

Covarian t: lV,$J = PT * Nx 
Contravariant: T,y = 5 - TX (3) 

where 

Jj= (4) 

The partial derivatives in equation 4 are B-spline hyperpatches influenced by deformed control 
points (P) and take the following form: 

ai; a+l-2 h+m-1 c+n.-1 

bu 
= 1 1 C Bi.l-l(u) . Bj,m(v) ’ Bk,nCw) . [E+lj.k - E.j.kl (3 

i=O j=O k=O 



aF 
a+l-1 6+m-2 c+n-1 

av 
= C C 1 &l(u) * Bj,m-l(v) ' Bk,n(W) . [E,j+l,k - Rjk] * , (6) 

i=O j=O kc0 

aE 
a+l-1 &m-l c+nh2 

z 
= c 1 c Bil(u) ’ Bj,m(o) . Bk.n-l(W) . [Rj*k+l - e?j,k] (7) 

i=O j=O k=O 

4 Adaptive Refinement and Decimation 
It is now possible, with these mathematical foundations in place, to present our curvature-based 
adaptive refinement and decimation algorithm. This can be visualized as stacking refinements 
in successive layers, which later decimations will remove in reverse order. 

As a preliminary, all vertices and edges in the original (undeformed) polygon-mesh are 
tagged to indicate that they are at the base level of the refinement hierarchy. After each suc- 
cessive Free-Form Deformation the algorithm scans all edges and categorizes a subset of these 
as candidates for either refinement or decimation. 

If either 
(a) at least one of the endpoints of an edge has been deformed and the normals at these end- 
points diverge after FFD by mote than a certain threshold angle (O,,) or 
(b) the edge is longer than a certain maximum length (Lmar), 
then the edge is placed on the refinement heap. 

This heap is ordered by decreasing edge length. This dictates an order of subdivision 
that tends to reduce the number of ill-formed (sliver) triangles by splitting long edges first 
[ 131. Slivers, which am thin wedge-shaped triangles, should be avoided since they can cause 
rendering artefacts in Gouraud shading, Phong shading and Radiosity [21]. 

Conversely, if both 
(a) the angle between deformed endpoint normals is below a decimation threshold (emin) and 
(b) the edge is shorter than the defined maximum length (L,,), 
then the edge’s endpoints are marked as possible candidates for vertex-centered decimation. 
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Figure 3: Refinement - subdividing an edge at its midpoint: [A] pre-subdivision, [B] post- 
subdivision. 

The refinement stage (adapted from Greissmair and Purgathofer [ 131) repeatedly extracts 
edges from the refinement heap until none remain. Each extracted edge, &, is subdivided 
according to figure 3 and the four new edges nti, II&, c%, &-IL are tested for refinement and 
if necessary inserted into the refinement heap. The only subtlety is that a refinement level, r, 



is assigned to the vertex fi and the two new edges, ati, &z, and r is set at one more than the 
highest level amongst the vertices 5, 6, ?, d (ie. T = ~QX(&,,,,I, 61eue., Qael, &r,el) + 1). The 
remaining edges, b&, @n, are assigned the same level as their source edge &. 

Decimation proceeds by grouping candidate vertices according to their refinement level. 
These groups are processed in descending order so that later refinements are removed first. A 
candidate vertex, A, is decimated only if it has: 
(a) exactly four incident edges which all pass the decimation test and 
(b) all four adjacent vertices at the same or lower level than fi. 
In this case decimation proceeds by exactly reversing a previous refinement. The vertex fi and 
its two incident edges at the same refinement level are removed. If we label these edges a?it 
and dk, then decimation is carried out according to figure 3 in reverse. 

There are a number of points pertaining to this algorithm that are worth examining: 

Normal 

Endpoint 

Figure 4: A condition under which the refinement classification fails. 

1. Sampling issues become important in two instances. Firstly, it may occur, in testing 
for refinement, that the endpoint normals of an edge do not diverge significantly even 
though the edge undulates inbetween (figure 4). In general, sampling theory dictates that 
such a situation cannot be completely avoided since pathological cases can always be 
constructed. However, the problem can be curtailed by subdividing edges that are longer 
than a certain maximum and thus sampling at a higher resolution. Secondly, testing the 
endpoints of an edge to establish whether the edge fall within a deformed cell, may 
erroneously fail if only a bounded inner section of the edge is deformed. Even worse, 
deformation may take place within a face without affecting its edges. This suggests 
that a test to determine if a given face intersects any deformed cells, is required. The 
computational overhead for such a test is substantial and can be avoided if the longest 
edges in the object ate shorter than the extent of a lattice cell. For these reasons a 
maximum edge length, L,,, is built into the refinement and decimation conditions. In 
practice, for a given FFD, L,,, is set to the minimum cell extent. 

2. Our second refinement/decimation trigger is Nimscheck’s endpoint normal divergence 
test [21]. The expression E = 1 - fi,l - & is an efficient method of evaluating this 
trigger since it approximates the angle, 0, between two unit normals, ii.1 and fi.2. As 
long as this angle is acute (0 C 5) the property E = 1 - cos(8) holds. An alternative 
condition is Greissmair’s midpoint distance test [ 131. Here the midpoint, m, of the pre- 
FFD candidate edge, e, is found and FFD is applied to produce fi. The trigger condition 
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(2) a = addition/subtraction, m = multiplication, d = division, 3 = square root 
(3) The arithmetic operations are given the following relative cost, based on timings taken 
on an SGI Indy: addition/subtraction 1, multiplication 1.07, division 1.91, square root 1.88 

Figure 5: An efficiency comparison of the endpoint normal and midpoint distance tests 



is then the sum of the distances of fi from the faces adjacent to the candidate edge. The 
endpoint normal divergence test is chosen over the midpoint distance test because of its 
efficiency advantages (as shown in table 5). In particular, the midpoint deformation is 
shifted from before to after the trigger and this becomes significant when there is a high 
volume of non-triggering edge tests. 

3. In our implementation a straightforward heap with a binary tree structure is employed. 
A potential improvement would be to select a heap that was optimized for frequent 
heap operations as established by profiling the algorithm. For example, Greissmair and 
Purgathofer [ 131 proposed a Pagoda Heap. 

[Al PI [Cl 

Figure 6: The importance of ordered decimation: [A] pre-decimation, [B] illegal decimation 
of vertex p which prevents further decimation, [C] legal decimation of vertex Q which allows 
later decimation of p. 

4. The decimation procedure is restricted to vertices with a very specific surrounding topol- 
ogy (which is produced in the refinement stage) and is applied in a specific order, which 
is controlled by the refinement level labelling of edges and vertices. These limitations 
are justified for several reasons: 

(a) As long as no decimation of base level vertices is allowed, the refinement/decimation 
algorithm is restricted to overlaying topological detail. This ensures that important 
aspects in the original topology (such as feature edges) are maintained. 

(b) The topology restrictions have considerable efficiency benefits. The alternative is 
a scheme which allows any number of edges incident on the decimation vertex 
(rather than just four). Schroeder et al. [24] achieve this by removing the vertex 
and all incident edges and then triangulating the resulting gap. The problem is 
thus reduced to tessellating an arbitrary polygon, which represents a significant 
additional overhead. 

(c) The ordering constraint ensures that refinement is fully reversible. Ideally, if a 
region is distorted from planar to convoluted and back to planar over a sequence 
of Free-Form Deformations, it should return to its original topology. Given the 
topology restrictions imposed on decimation, this is only possible in general (as 
illustrated by figure 6) if refinements are placed in a stack from which only the top 
element can be removed by decimation. 



5 Conclusion 
In this paper we have extended and improved Greissmair’s adaptive refinement algorithm [ 131 
by: 

l incorporating an efficient, fully symmetrical decimation scheme that maintains the un- 
derlying initial topology, 

l addressing sampling problems caused by a disparity between the scope of a Free-Form 
Deformation and the size of individual faces in the polygon-mesh object, 

l reducing the computation cost of the refinement/decimation trigger condition. 

Figure 7 shows the application of our algorithm to a sequence of two sample defor- 
mations. This is contrasted against the same deformations without subsequent refinement 
or decimation. Figure 7A displays an undistorted low-resolution object. In figure 7B the 
object has undergone an extruding Free-Form Deformation and adaptive meshing. This in- 
volves 200 refinements at parameter value 8,,, = $ and executes in 0.0168 seconds on an 
RlOOOO x 195Mhz SGI Octane processor. Figure 7C shows the same deformation without 
any refinement. A second flattening deformation is then imposed on the object in figure 7B to 
produce figure 7E. Notice that the centre of the nearly flat crater is now wastefully oversatu- 
rated with polygons. Figure 7D illustrates the result of an adaptive meshing step (B,, = 5 
and emi,, = $) comprising 32 refinements and 92 decimations which is completed in 0.0095 
seconds. These scteetrshots demonstrate both the necessity of adaptive refinement and deci- 
mation, and the efficacy of our technique. 
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Figure 7: Refinement and Decimation: [A] an initial object, [B] an extruding deformation 
with adaptive refinement, [C] the same extruding deformation without refinement, 
[D] a flattening deformation with refinement/decimation, [E] the same flattening 
deformation without any refinement/decimation. 


