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Dual √3 subdivision schemes are strange 
beasts. They live somewhere between the 
useful subdivision schemes and the unusable 
subdivision schemes. Studying such schemes 
can provide insights into the behaviour of 
the more useful schemes. 

On this page we compare Dual √3 against Primal √3, 
Primal √2 and Dual √2 schemes.

On the other page we analyse the characteristics of Dual 
√3 schemes. This shows that, despite some superficially 
nice features, Dual √3 schemes have serious drawbacks 
which make them unusable in practice.

Terminology
Primal: both vertices and faces centres map to vertices

Dual: both vertices and faces centres map to face centres

√3: a triangular scheme, two subdivision steps produce 
a ternary scheme

√2: a quadrilateral scheme, two subdivision steps 
produce a binary scheme

Quadrilateral √2 Triangular √3
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Example scheme 
[Kobbelt, 2000]

Example scheme 
[Velho & Zorin, 2001]
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Example scheme 
[2002]
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Example scheme 
[Peters & Reif, 1997]
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The basic scheme Stationary points

Eigenanalysis

Breaking symmetryExtraordinary points

Conclusion

Vertices map to left 
triangles which map to 
up triangles

Up triangles map to left 
triangles which map to 
up triangles

Down triangles map to 
left triangles which 
map to up triangles

The stationary points, about which eigenanalysis can be performed, are 
the face centres of up triangles. The face centres of left triangles are 
also stationary. Vertices and the face centres of down triangles and 
right triangles are not stationary, but become left or up triangles after 
one subdivision step.

The geometry of the Dual √3 
subdivision scheme is shown 
above. We see part of a base 
regular triangular mesh, with a 
first level of subdivision and part 
of the second level of subdivision.

The simplest Dual √3 subdivision 
scheme places new vertices one 
third of the way along each edge. 
This is a very small mask, allowing 
for efficient local computation of 
new vertex locations.
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Note the lack of reflection 
symmetry in the region which 
must be analysed.

The limit surface is C1 
in the regular case.

Alternatives & their footprints

rotate in alternate directions 
on alternate steps

rotate in same direction on 
every step

A footprint shows which vertices in the subdivided mesh are affected 
by a given vertex in the original mesh. We show the footprints after six 
subdivision steps. The lower footprint is fractal (as is the Primal √3 
footprint). Both footprints have only threefold rotational symmetry.

A characteristic of Dual √3 
schemes is that they break 
symmetry. Around any regular 
source vertex, every alternate 
edge will have a refined vertex 
one third of the way along it, 
while the other edges have a 
refined vertex two thirds of 
the way along the edge (as 
measured from the source 
vertex). Centres of six-fold 
symmetry in the source mesh 
thus become centres of three-
fold symmetry in the new 
mesh. This symmetry breaking 
does not occur in Primal √3 
schemes nor in either Primal 
or Dual √2 schemes.

Any subdivision scheme must be able to handle extraordinary points. In 
this case, vertices that have valency other than 6. There appears to be 
no sensible way in which Dual √3 schemes can cope with such points.

Type C triangle: 
  rotate by 60º 
    clockwise

    Type A triangle: 
  rotate by 60º 
anticlockwise
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Type A and type C triangles must alternate around a vertex for the 
scheme to work. In a regular mesh this is easy to guarantee, with no 
two triangles of the same type sharing a common edge.
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However, around an odd-valence vertex, it 
is impossible to alternate A and C triangles 
around the vertex. There will have to be 
two triangles of the same type sharing a 
common edge. The new vertex for this 
edge can be placed halfway along the edge.

Unfortunately, an extraordinary vertex has 
an influence beyond its immediate 
neighbourhood. The inability to alternate A and C triangles propagates 
out to the 2-ring around the vertex, then to the 3-ring, and so on until a 
second extraordinary vertex intercepts the trail of pairs of triangles. 
Wherever two triangles of the same type share a common edge, there is 
a special case in the connectivity of the subdivided mesh.

Zeilfelder [2002] has shown 
that it is possible to label all 
triangles in the mesh so that 
nowhere are more than two 
triangles of the same type 
adjacent. This provides some 
limitation on the artefacts but 
finding an appropriate 
labelling is a global 
optimisation problem.
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Dual √3 subdivision has a very small mask, like Peters & Reif's 
simplest scheme, and shares the slow refinement property of all √3 and 
√2 schemes. However, it has serious drawbacks which make it unusable 
as a practical subdivision scheme. In particular: it breaks symmetry, 
which means that the same source mesh can have (slightly) different 
refinements depending on triangle labelling; and it requires a global 
optimisation problem to be solved at each subdivision step in order to 
handle extraordinary points.
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