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Abstract. We investigate whether dual triangular
√

3 subdivision
can be made practical. We conclude that it has serious drawbacks.
Our analysis provides insights into the sorts of problem which occur
with subdivision schemes which break symmetry.

§1. Introduction

Dual subdivision schemes are defined in [6] as those where vertices at one
level of subdivision map to face centres at the next. Doo-Sabin [3] is
the classic example of a dual quadrilateral binary scheme. The principal
feature of dual triangular subdivision is that it fails to preserve rotational
symmetries. Vertices, which are 6-centres, become face centres, which are
only 3-centres. Midedges, which are 2-centres, map to points with no
rotational symmetry in the

√
3 case and to 3-centres in the binary case.

This loss of symmetry is likely to cause difficulties in deriving a useful dual
triangular subdivision scheme. Figure 1 illustrates, however, that, in the
regular case, it is easy to construct a dual triangular

√
3 scheme.

This paper was inspired by our work on a complete classification of
all possible subdivision schemes [6]. In that work, we classify subdivision
schemes in terms of the base mesh and of how mesh primitives (vertices,
face centres, midedges) map to one another from one step of subdivision
to the next; we identify that it is theoretically possible to have triangular
schemes which map vertices at one level to face centres at the next. This
paper reports on our investigation into whether such schemes can be made
practical.
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Fig. 1. The geometry of the dual triangular
√

3 subdivision scheme in the regular
case. Part of a base regular triangular mesh is shown, with a first level
of subdivision (dotted lines) and part of the second line of subdivision
(dashed lines).

We chose to investigate dual
√

3 schemes rather than dual binary
schemes for two reasons:

1) In dual
√

3, all face centres map to face centres (which is required for
a more strict definition of duality than that used in [6]), whereas, in
dual binary (TD(2, 0) [6]), half of the face centres map to face centres
and the other half to vertices.

2)
√

3 provides the slowest refinement of all primal or dual triangular
schemes; therefore if dual

√
3 can be made to work, it may offer

advantages over binary schemes, whether primal or dual.

The rest of the paper considers the following issues: comparison of
dual triangular

√
3 to other

√
2 and

√
3 schemes; factors arising purely

from the topology of
√

3 schemes, including the cases of extraordinary
faces and extraordinary vertices; factors arising from choice of subdivision
mask.

§2. The
√

2 and
√

3 Schemes

Figure 2 illustrates the six types of this slowest form of subdivision. In
the notation of Alexa [1] and Ivrissimtzis et al [6], these are the (1, 1)
schemes. The four which preserve symmetry have already received atten-
tion: QD [13], QP [15], TP [8], HD [2]. In addition, TP and HD have
been combined into a single composite

√
3 scheme [12]. This paper con-

siders the TD scheme. The HP scheme can be expected to have similar
characteristics.
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Fig. 2. One cell from each of the (1, 1) schemes using the notation of [6]. Q,
T and H respectively indicate quadrilateral, triangular and hexagonal
base meshes in the regular case. P and D respectively indicate primal
and dual schemes. These Q schemes are the

√
2 schemes; while these T

and H are the
√

3 schemes.

§3. Topological Considerations

Figure 1 shows that there is no problem with subdividing the regular trian-
gular lattice in a dual triangular

√
3 scheme. Note that, after a single sub-

division step, all vertices and all the face centres of both up-pointing and
down-pointing triangles become the face centres of left-pointing triangles.
After a second subdivision step, they are all face centres of up-pointing
triangles. Thus the principal mark points, around which eigenanalysis is
performed, are the face centres of up-pointing triangles. This distinction
between up- and down-pointing triangles does not occur in primal

√
3,

but it does in primal binary schemes (Loop [10] and Butterfly [5]) where
face centres of up-pointing triangles become face centres of down-pointing
triangles and vice-versa.

A further distinction must be made for dual
√

3 schemes. At each step
the triangular lattice is rotated by π/6. There is a choice at each step as
to whether to rotate the lattice by +π/6 or −π/6 (see Section 4 for further
ramifications of this behaviour). The obvious ways to handle this are either
always to rotate in the same direction or to alternate rotation directions.
Figure 1 assumes that rotations alternate, given a rotation centre at the
face centre of an up-pointing triangle. Different assumptions will produce
different limit surfaces. For example, consider a scheme where a vertex
affects the position of only the six subdivided vertices nearest to it (i.e. the
six vertices which appear on the six edges incident on the vertex). We can
show which subdivided vertices are affected by a single original vertex
after multiple subdivision steps. Figure 3 shows these approximations to
each scheme’s support for the two different assumptions, and for Kobbelt’s
primal

√
3 scheme [8]. It is interesting that the same scheme can produce

both a fractal and a polygonal support. A detailed analysis of the support
of subdivision schemes can be found in [7].

§4. Extraordinary Faces and Extraordinary Vertices

The scheme can be easily adapted to extraordinary faces (faces with more
than three edges) but there are difficulties in extending the scheme to
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Fig. 3. These diagrams show the vertices in the sixth subdivision step which are
affected by a single original vertex. They provide a good approximation
to the shape of the support of each subdivision scheme. (a) dual

√
3

assuming alternating rotation directions on alternate steps. (b) dual
√

3

assuming the same rotation direction on every step. (c) primal
√

3 [8].
For more details see [7].

cope with extraordinary vertices (vertices of valence other than six). To
explain these difficulties, we note that there are two ways in which a
triangular face can map to a triangular face in the refined mesh. In both
cases the refined triangular face has edges of length 1/

√
3 relative to the

original face, but it can be rotated by either +π/6 or −π/6 relative to
the original face. Call these two types of triangle C and A (Figure 4(a)).
In the regular mesh these correspond to up- and down-pointing triangles.
Around an extraordinary vertex or face, the distinctions between up- and
down-pointing becomes rather strained, so we use C and A for clarity.

Around an extraordinary face, all triangles which share an edge with
the face will have the same type. It is therefore straightforward to refine
an extraordinary face to a face with the same number of edges.

Around any vertex, C and A triangles must alternate for the scheme
to work in a simple way. This can be explained by considering the position
of the refined vertex on the common edge of adjacent triangles. If it is
positioned so that one triangle is type C, then this forces the adjacent
triangle to be type A. Another manifestation of this can be seen around
a regular vertex (Figure 4(b)). Here, every alternate edge has a refined
vertex one third of the way along it, while the other edges have a refined
vertex two thirds of the way along the edge (as measured from the source
vertex). This alternation is a consequence of the symmetry-breaking na-
ture of triangular dual schemes.

For any mesh consisting only of even-valence vertices, A and C faces
can always be made to alternate. Designate an arbitrary face to be of type
C and the labelling of all other faces is automatic and unique.

Even-valence extraordinary vertices can thus be handled easily. Va-
lence 8 vertices become squares, valence 10 become pentagons, and so on.
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Fig. 4. (a) The two types of triangle: C and A. (b) Around a regular vertex (or
any even valency vertex) the types of triangle alternate. (c) Around an
odd valency vertex, it is impossible for the types of triangle to alternate.

Any valence 2k vertex refines to a k-sided face. A valence 4 vertex refines
to an edge. The difficulty arises with odd-valence vertices. It is impossible
to alternate A and C triangles around such a vertex. There will have to be
two triangles of the same type sharing a common edge. One of these tri-
angles will require the refined vertex on the common edge to lie one-third
of the way along the edge; the other will require it to lie two-thirds of the
way along the edge. The obvious solution is to place this special vertex
halfway along the edge, though this compromise does not solve the whole
problem. In addition, there is the question of how to connect the refined
vertices around the odd-valence vertex. The best that can be achieved is
to connect them in such a way as to minimise the number of odd-valence
vertices in the refined mesh. Valence 5 and 7 vertices will always leave
another vertex of the same valence in the refined mesh. Valence 3 vertices
refine to a valence 4 and a valence 5 vertex, the valence 4 vertex vanishing
on the next refinement step. Vertices of valence 2k+ 1 can refine to a ver-
tex of valence 2k and one of valence 7, or can move down the odd valences
slowly, if desired, introducing a vertex of valence 8 at each refinement step
until they reach the irreducible minimum of valence 7. Figure 4(c) illus-
trates what must be done for a vertex of valency 5. Note that the precise
nature of the refined mesh depends on the labelling of the triangles.

Unfortunately, an odd-valence vertex has an effect beyond its im-
mediate neighbourhood. Consider an odd-valence vertex surrounded by
valence 6 vertices, with the next nearest extraordinary vertex some dis-
tance away. The inability to alternate A and C triangles in the 1-ring
around the vertex, propagates out to the 2-ring, so that there will be two
adjacent triangles of the same type in the 2-ring. By induction, this prob-
lem will also be manifest in the 3-ring, the 4-ring, and so on. Indeed,
the only way to stop the propagation is by having a second odd-valence
vertex intercept the trail of pairs of triangles of the same type (Figure 5).
Wherever two triangles of the same type have a common edge, there is a
need to place the refined vertex halfway along that edge, and there is a
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Fig. 5. In a mesh with odd valency vertices, pairs of triangles of the same type
will appear. A pair of the same type will appear next to any odd valency
vertex and a trail of pairs will propagate out from the odd valency vertex
until another odd valency vertex is encountered. Determining a good
labelling of the mesh is a global optimisation problem.

special case of the mesh connectivity around the original vertices at either
end of the edge.

All of this makes the scheme extremely unattractive for meshes which
contain any odd-valence vertices. Lovász [9] proves that it is possible to
label the triangles in any triangular mesh with one of two labels (here we
use A and C) so that nowhere are more than two triangles with the same
label adjacent. Nürnberger and Zeilfelder [11] have developed an algorithm
which can achieve this labelling in under a second for a mesh with a million
triangles. We suspect that, given a labelling of the original mesh, a suitable
labelling of the refined mesh can be derived, so the labelling need only be
done once. This labelling provides some limitation on the problem, but it
is clear that the limit surface will depend on the labelling and that many
labellings are possible for a given mesh.

§5. Choice of Subdivision Mask

All of the above arises purely out of the geometry and topology of dual
triangular schemes, regardless of the choice of subdivision mask. While
there are already clear problems inherent in the scheme, we will consider
one particular choice of subdivision mask to ascertain if any benefit can
be found in pursuing the scheme further. The simplest possible scheme
calculates a new vertex as the weighted mean of the two source vertices
at either end of its edge. In the general case the weights will be one third
and two thirds. For the special case required when two A triangles or two
C triangles meet at an edge, that edge’s new vertex will use weights one
half and one half. This choice of mask is a triangular analogue of Peters
and Reif’s simplest (dual quadrilateral

√
2, QD(1, 1)) scheme [13].

It is possible to perform eigenanalysis [14] around the principal mark
point for this scheme. In the regular case, two steps of subdivision lead to
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Fig. 6. Eigenanalysis: (a) the self-similar region after two steps of subdivision.
(b) the associated matrix.

the region of interest shown in Figure 6(a). Note that, while it has three-
fold rotational symmetry, it has no reflection symmetry. The eigenval-
ues of the corresponding matrix (Figure 6(b)) are: 1, 1

3 ,
1
3 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 .

This provides necessary conditions for C1 continuity and proves that the
scheme cannot have C2 continuity (although the second derivative will be
bounded). The mask of a double subdivision step is shown in Figure 7.
It is clear that this is not divisible along the horizontal principal axis by
(1 + z1 + z2

1) nor by the equivalent factor along either of the other prin-
cipal axes. Hence it is not possible to apply Dyn’s Laurent polynomial
analysis [4] to determine if the scheme meets the sufficient conditions for
C1. It also shows that, in common with primal

√
3, there are no direc-

tions for which an extruded polyhedron gives an extruded limit surface.
However, it is interesting to note that the scheme can be split into three
components (Figure 7) which can themselves each be factorised twice. We
are investigating the use of such splits for the analysis of other (primal)
schemes. When that analysis is complete, we will be able to apply it to
this scheme.

§6. Conclusion

It is possible to construct a dual triangular
√

3 scheme, with some limita-
tions and drawbacks. The advantages of the scheme are that it has:

1) The smallest possible subdivision mask, making computation of new
vertices simple and efficient.

2) The lowest possible difference in scale between subdivision levels (
√

3)
allowing the finest possible control over refinement level.
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Fig. 7. At left, the mask of two steps of the simple subdivision scheme. This
can be decomposed into a sum of three masks, each of which can be
factorised.

3) Simple handling of extraordinary faces and even-valency extraordi-
nary vertices.

Against these advantages are ranged grave disadvantages:

1) For the regular mesh, the scheme can be no more than C1 continuous.

2) For a mesh containing only 6-valent vertices there are two possible
slightly different limit surfaces, depending on the initial labelling of
the faces.

3) For a mesh containing only even-valency vertices there is the added
choice of how to convert each non-6-valent vertex into a polygon at
the first subdivision step; there being two possible configurations at
each vertex.

4) For a mesh containing odd-valency vertices, there are serious draw-
backs: (i) a global optimization problem must be solved to get a
suitable labelling of faces; (ii) there are many possible limit surfaces,
(iii) the extraordinary vertices move around (Figure 4(c)) and the
extraordinary parts of the grid are polylines (Figure 5) rather than
isolated vertices or faces, so making it extremely difficult to perform
any analysis the limit surface.

Note that only the first advantage and the first disadvantage are spe-
cific to the simple scheme described in Section 5. The other advantages and
disadvantages are general to any dual triangular

√
3 subdivision scheme.

The fourth disadvantages indicates that dual triangular
√

3 schemes are
suitable only for meshes which contain only even-valence vertices. This is a
serious limitation. The earlier points in the list show that, even accepting
this limitation, the disadvantages outweigh the advantages.

The overarching conclusion is that breaking symmetry is a bad idea.
This short investigation has provided evidence of the sorts of things which
go awry when symmetry is broken and it provides a useful data point
showing one boundary to the domain of usable subdivision schemes.
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