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Abstract
Artifacts are present in subdivision and box-spline surfaces (Sabin and Barthe, 2003; Sabin

et al., 2005; Augsdörfer et al., 2009). An artifact is a feature of the limit surface which cannot be
avoided by movement of control points by the designer. Ideally, the difference between designer
intent and what emerges as a limit surface should be eliminated. The first step to achieving this is
by understanding and quantifying the artifact observed in the limit surface.

Utilising the subdivision process as a tool for analysis we develop a generic expression to
determine the magnitude of artifacts in the limit surface. Our results provide a measure of arti-
facts present in the limit surface with respect to initial control point sampling. We demonstrate
the method by analysing box-splines and subdivision surfaces based on triangular meshes: Loop
subdivision, Butterfly subdivision and a novel interpolating scheme with two smoothing stages.
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1. Introduction

Subdivision is an algorithmic technique to generate smooth surfaces as the limit of a sequence
of successively refined polygons or polyhedra. The limit surface is made up of components with
spatial frequencies below the Nyquist limit and those with spatial frequencies above. The designer
can control the first group of components by moving control points, and so this group gives in
some sense the desired surfaces. However, the designer cannot control the second group and these
are what we call artifacts.

To be able to make an appropriate choice of which scheme and how many control points to
use, the designer needs to know how the artifacts vary with the scheme and sampling density.
Sabin et al. (2005) explained how subdivision can be employed as a tool for analysis of artifacts
which are not controllable by the designer. Augsdörfer et al. (2009) extended this idea to limit
surfaces based on quadrilateral meshes. In this work we develop a generic expression based on
the tools described by Sabin et al. (2005) which is applicable to limit surfaces irrespective of
the mesh type. We demonstrate this method by analysing, for the first time, box-splines and
subdivision surfaces based on triangular meshes. The three examples analysed are limit surfaces
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Figure 1: A triangular mesh (black) of the form cos(πΩ.2J) sampled from a sinusoidal surface (grey). In this example
Ω = [0.1, 0.2]. Points indicate the vertices of the control polyhedron.

obtained using Loop subdivision (Loop, 1987), Butterfly subdivision (Dyn et al., 1990) and a novel
interpolating subdivision scheme with two smoothing stages.

2. Method of Analysis

One subdivision step can be viewed as a multi-stage process involving one refinement stage
followed by one or more smoothing stages. Sabin et al. (2005) showed that artifact components are
inevitably introduced in the refinement stage. The signal and the artifact components are then both
smoothed in subsequent smoothing stages. When handling schemes not based on box-splines we
may encounter, next to refinement and smoothing stages, a kernel from which no more smoothing
stages can be extracted. In these cases, we need to determine the kernel’s effect. We also want to
determine the magnitude of the artifact in the limit surface, and so the effect of the limit stencil,
different for each scheme, must be considered.

2.1. The input surface
In order to analyse the behaviour we sample original data, AJ , from a 2D sine wave of fre-

quency Ω, measured in units of complete cycles per original vertex. An actual data set can be
regarded as the sum of such components by Fourier theory, and, because the system updating from
one step to the next is linear, we can separate the initial data into components of different spatial
frequency, and look at the response of each component as a function of frequency. The effect on
the total is the sum of the effects on the separate spatial frequency components.

We use J = (x, y) to denote the grid points before refinement and P for the grid points after
refinement.

In triangular grids we have three principal grid directions X1, X2 and X3, each of which is given
as a vector Xk = [xk yk], where k ∈ {1, 2, 3} (see Figure 2 for labelling). Each sample point AJ on
the grid is defined by some combination of these three vectors.

The frequency, Ω, is given as a vector Ω = [ωx, ωy], where ωx and ωy are the x and y compo-
nents of the frequency. This vector has a direction, the direction of sampling, and length, which is
a measure of frequency. The longer the vector, the higher the sampling frequency.
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Figure 2: Parameter space of a triangle grid and the labelling used in Section 2. The mesh before refinement is shown
in blue. The mesh after refinement is not shown. X1, X2 and X3 are shifts in the newly refined mesh. The grid
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Let the input surface be AJ = cos(πΩ.2J) + i sin(πΩ.2J) = eiπΩ.2J = TΩ.2J , where T = eiπ. The
samples are taken at 2J, where J = mX1 + nX2, m, n ∈ Z.

2.2. Artifacts after refinement
We assume the validity of the partitioning of the subdivision process into first a refinement

stage followed by a series of convolutions with smoothing matrices as discussed by Sabin et al.
(2005).

For simplicity, let A, B, C and D, as in Figure 2, be the magnitudes at vertices in the triangular
mesh after refinement. So, the mesh after refinement has the entries

S 2J = A TΩ.2J

S 2J+X1 = B TΩ.(2J+X1)

S 2J+X2 = C TΩ.(2J+X2)

S 2J+X3 = D TΩ.(2J+X2)

That is, each of the four types of vertex is a constant multiplied by the value of the surface that was
sampled. The result of a refinement on a triangular mesh is to quadruple the original mesh points
and insert zero values at all new positions B, C and D, so that A = 4 and B = C = D = 0 after
refinement. This is equivalent to the quadrilateral case, discussed by Augsdörfer et al. (2009).

We partition the refined configuration into a component with only the original signal frequency
and three artifact components. The artifacts cause displacements in magnitude of the original mesh
points in the three directions along the grid lines. This implies that the artifacts introduce variations
perpendicular to the grid lines. Therefore, the surface, S P, where P = 2J, and which is made up
of one signal and three artifact components, is is given by

S P = TΩ.P

+ TΩ.P
(

T Y1.P + T−Y1.P
)

/2

+ TΩ.P
(

T Y2.P + T−Y2.P
)

/2

+ TΩ.P
(

T Y3.P + T−Y3.P
)

/2,
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where

Y1 =
1
2

(X2 − X3) , Y2 =
1
2

(X3 − X1) , and Y3 =
1
2

(X1 − X2)

are directions perpendicular to the grid lines, as shown in Figure 2.
Let a be the magnitude of the signal component and b, c and d be the magnitudes of the artifact

components in the directions Y1, Y2 and Y3 respectively. Then the surface, S P, after refinement is
given by

S P = a TΩ.P

+ b TΩ.P
(

T Y1.P + T−Y1.P
)

/2

+ c TΩ.P
(

T Y2.P + T−Y2.P
)

/2

+ d TΩ.P
(

T Y3.P + T−Y3.P
)

/2,

The relationships between the vertex values of the refined mesh and the signal and artifact
magnitudes are

A = (a + b + c + d)
B = (a + b − c − d)
C = (a − b + c − d)
D = (a − b − c + d)

In matrix notation this is
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The inverse of matrix N is simply N−1 = N/4. Hence, we have
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Matrix N expresses therefore a two way relationship between the magnitudes at the refined
vertices and the amount of signal and artifact components. After refinement each component has
a unit magnitude, a = b = c = d = 1.

2.3. Artifacts after smoothing
A single smoothing stage in all three grid line directions of a triangular mesh is given by the

mask:

1
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For example, one step of Loop subdivision can be implemented as a refinement stage followed by
two of these smoothing stages.

Let As, Bs, Cs and Ds be the magnitudes at vertices in the triangular mesh after smoothing.
The effect of applying the smoothing mask (3) to the refined data is thus

8As = 2A + 2B cos(πΩ.X1) + 2C cos(πΩ.X2) + 2D cos(πΩ.X3)
8Bs = 2A cos(πΩ.X1) + 2B + 2C cos(πΩ.X3) + 2D cos(πΩ.X2)
8Cs = 2A cos(πΩ.X2) + 2B cos(πΩ.X3) + 2C + 2D cos(πΩ.X1)
8Ds = 2A cos(πΩ.X3) + 2B cos(πΩ.X2) + 2C cos(πΩ.X1) + 2D

Substituting c1, c2 and c3 for cos(πΩ.X1), cos(πΩ.X2) and cos(πΩ.X3) respectively, we can write
the above in matrix notation as
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Equation (1) uses matrix N to encode the relationship between the vertex values A, B, C, D
and the magnitudes of the signal and artifact components a, b , c , d. Equation (1) is also valid
between smoothed data As, Bs, Cs, Ds and the magnitudes of the signal and artifact components
as, bs , cs , ds of the smoothed data. We thus have
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where RN = NRN/4:
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We can thus rewrite Equation (5) as

as = a (1 + c1 + c2 + c3)/4
bs = b (1 + c1 − c2 − c3)/4
cs = c (1 − c1 + c2 − c3)/4
ds = d (1 − c1 − c2 + c3)/4

We are now able to look at specific examples of sampling frequencies Ω.
If the sampling frequency is perpendicular to one of the grid lines, e.g. Ω = hY1, where h ∈ R,

we have c1 = cos(πhY1.X1) = 1, c2 = cos(πhY1.X2) and c3 = cos(πhY1.X3). (Y1.X2) = −(Y1.X3)
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Figure 3: The three 2D plots of the hexagonal region of interest in theΩ = [ωx, ωy] parameter space of the three artifact
components Y1, Y2 and Y3 respectively demonstrate the effect on the magnitude on the surface of a single smoothing
stage after refinement in a triangular mesh on the three artifact components with respect to sampling frequency. By a
symmetry argument it is clear that these are exactly rotated copies of one another.

and we therefore have c2 = c3 = cos(πω) where ω = hY1.X2. For Ω = hY1 we thus have

as = (2 + 2 cos(πω))/4 = cos2(πω/2)
bs = (2 − 2 cos(πω))/4 = sin2(πω/2)
cs = (1 − 1 + cos(πω) − cos(πω))/4 = 0
ds = (1 − 1 − cos(πω) + cos(πω))/4 = 0

Therefore there are no artifacts in the Y2 or Y3 direction when the data is extruded along the X1
direction, but there are artifacts in the Y1 direction, perpendicular to the direction of the extrusion.

Similarly, when the data has an extrusion in direction X2 or X3 we do not get any artifacts in Y1
or Y3 direction, or Y1 or Y2 direction respectively. For sampling frequencies in directions other than
perpendicular to the grid lines it is difficult to determine an analytic expression for the signal and
artifact amplification. However, matrix RN can be used to calculate signal and artifact magnitudes
for any sampling frequency. Because

(NRsN)/4 = (NRN/4)s = Rs
N , (6)

every additional smoothing term after refinement will simply increase the power on RN and we
can therefore determine the effect of additional smoothing stages on the magnitude of signal and
artifact components by simply multiplying by RN for each smoothing stage.

The effect of a single smoothing stage on each of the three artifact components can be de-
termined independently as a function of sampling frequency Ω = [ωx, ωy] as shown in Figure
3.

The effect of smoothing on all artifact components present after refinement can be summarised
by looking at the effect of smoothing on their sum, or at the mean artifact energy, given by
√

(b2 + c2 + d2)/3, as in Figure 4. We can look at the effect of one, two or more smoothing stages.
Likewise, we look at the attenuation of the signal component after one smoothing stage as

a function of sampling frequency. We also express the sum of artifacts as a percentage of the
attenuated signal to demonstrate how much the initial signal has deteriorated in comparison to the
artifact components, both shown in Figure 5.
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Figure 4: Top: The sum of artifact components (left) and the mean energy of the artifact (right) are shown as a function
of sampling frequency after one subdivision step including one smoothing stage in the three principal grid directions.
Bottom: the same as above, but for a subdivision step with two smoothing stages. Note the difference in scale of a
factor of 10.

Both signal and artifact energy decrease with every additional smoothing stage in a single
subdivision step. Also, with every additional subdivision step, the magnitude of the signal and
artifact components introduced in the refinement stage of the first subdivision step decreases. For
some engineering applications highly accurate surfaces are important and many subdivision steps
are performed. So rather then looking at their magnitudes after only a single subdivision step we
extend the analysis to determine the magnitudes in the limit surface, which are important to such
CAD/CAE applications.

2.4. Artifacts in the limit
Matrix RN enables us to compute the magnitudes of both signal and artifact term after one

subdivision step. However, we are interested in the magnitudes of signal and artifact components
in the limit surface, S P, such that

S P = α TΩ.P

+ β TΩ.P
(

T Y1.P + T−Y1.P
)

/2 (7)

+ γ TΩ.P
(

T Y2.P + T−Y2.P
)

/2

+ δ TΩ.P
(

T Y3.P + T−Y3.P
)

/2
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Figure 5: The signal attenuation (left) and the energy of the artifact as a percentage of signal (right) are shown after
one subdivision step with one smoothing stage as a function of sampling frequency.

where α is the magnitude of the signal component in the limit and β, γ and δ are the magnitudes
in the limit of the artifact components in the three directions Y1, Y2 and Y3 respectively.

To compute the magnitudes of signal and artifact term in the limit we consider the effect of
the limit stencil on the data after one subdivision step. The limit stencil is derived from the row
eigenvector corresponding to the dominant eigenvalue of the scheme (Halstead et al., 1993). We
show an example in Section 3. By rewriting the limit stencil as a matrix similar to matrix R in
Equation 5 we can derive the magnitudes of signal and artifact components in the limit. Let L be
the limit matrix. Then we have
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(8)

Where s is the number of smoothing stages of a particular scheme. Equation (1) holds for the
limit data also. We thus have
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(9)

where LN = NLN/4.
Because the limit stencils will be different for each subdivision scheme, we discuss the imple-

mentation in detail in the next section.

3. Examples

We present results for three triangular subdivision schemes: the Loop scheme (Loop, 1987),
the Butterfly scheme (Dyn et al., 1990), and an interpolating scheme with two smoothing stages.
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α (3 + c1 + c2 + c3)(1 + c1 + c2 + c3)2/96
β (3 + c1 − c2 − c3)(1 + c1 − c2 − c3)2/96
γ (3 − c1 + c2 − c3)(1 − c1 + c2 − c3)2/96
δ (3 − c1 − c2 + c3)(1 − c1 − c2 + c3)2/96

Table 1: The signal and artifact magnitudes in the limit surface when using the original Loop subdivision scheme,
whereα is the signal magnitude and β, γ and δ are the magnitudes of artifacts in the Y1, Y2 and Y3 direction respectively.
The expressions c1, c2 and c3 stand for cos(πΩ.X1), cos(πΩ.X2) and cos(πΩ.X3) respectively.
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Figure 6: The three artifact components in the limit surface when using the original Loop scheme.

3.1. The Loop scheme
The mask of the Loop scheme (Loop, 1987) is

1
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



(10)

It is equivalent to the convolution of two smoothing masks (3). We therefore multiply the refined
data by R2

N to determine the magnitudes of signal and artifacts after one subdivision step (e,g, see
the bottom row of Figure 4).

To determine the magnitudes in the limit we derive a limit matrix, L, from the limit stencil of
the scheme, which is determined from the dominant row eigenvector:





















1 1
1 6 1

1 1





















/12 (11)

The effect of applying the limit stencil (11) to the data after one Loop subdivision step can then be
described as

12AL = 6As + 2Bs cos(πΩ.X1) + 2Cs cos(πΩ.X2) + 2Ds cos(πΩ.X3)
12BL = 2As cos(πΩ.X1) + 6Bs + 2Cs cos(πΩ.X3) + 2Ds cos(πΩ.X2)
12CL = 2As cos(πΩ.X2) + 2Bs cos(πΩ.X3) + 6Cs + 2Ds cos(πΩ.X1)
12DL = 2As cos(πΩ.X3) + 2Bs cos(πΩ.X2) + 2Cs cos(πΩ.X1) + 6Ds
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Figure 7: Magnitudes in the limit surface when applying the Loop scheme are shown as a function of sampling
frequency. Left: The signal attenuation. Centre: The three artifacts Y1 (red), Y2 (green) and Y3 (blue). Right: The
artifact energy as a percentage of the attenuated signal (right).

Substituting c1, c2 and c3 for cos(πΩ.X1), cos(πΩ.X2) and cos(πΩ.X3) respectively, the matrix
notation is
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. (12)

The magnitudes of the signal and artifact components in the limit are given by
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. (13)

and LN = NLN/4 is

LN =
1
6
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
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



3 + c1 + c2 + c3 0 0 0
0 3 + c1 − c2 − c3 0 0
0 0 3 − c1 + c2 − c3 0
0 0 0 3 − c1 − c2 + c3


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























.

The magnitudes of the signal and artifact components in the limit are summarised in Table 1. We
can now evaluate signal and artifact amplitudes in the limit for any sampling frequency. Each
artifact component is shown separately in Figure 6. Results for signal attenuation, the sum of
artifact components and the total artifact energy as a percentage of remaining signal are shown in
Figure 7.

3.2. The Butterfly scheme
This is an interpolating scheme with a kernel from which no further smoothing stages can be

extracted. The kernel can be dealt with in the same way we handle the smoothing stages.
The mask of the Butterfly scheme (Dyn et al., 1990) is
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α (1 + 2(c1 + c2 + c3) − (c12 + c13 + c23))(1 + c1 + c2 + c3)/16
β (1 + 2(c1 − c2 − c3) − (−c12 − c13 + c23))(1 + c1 − c2 − c3)/16
γ (1 + 2(−c1 + c2 − c3) − (−c12 + c13 − c23))(1 − c1 + c2 − c3)/16
δ (1 + 2(−c1 − c2 + c3) − (c12 − c13 − c23))(1 − c1 − c2 + c3)/16

Table 2: The signal and artifact magnitudes in the limit surface when using the butterfly subdivision scheme, where α
is the signal magnitude and β, γ and δ are the magnitudes of artifacts in the Y1, Y2 and Y3 direction respectively. The
expressions c1, c2 and c3 stand for cos(πΩ.X1), cos(πΩ.X2) and cos(πΩ.X3) respectively, while c12, c23 and c13 stand
for cos(πΩ.(X1 − X2)), cos(πΩ.(X2 − X3)) and cos(πΩ.(X1 − X3).
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Figure 8: The three artifact components in the limit surface when using the butterfly scheme.
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.

This is the smoothing mask (3) convolved with the kernel mask:
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

. (14)

Let Ask, Bsk, Csk and Dsk be the magnitudes at vertices in the triangular mesh after the kernel
has been applied. The vertex magnitudes are laid out as shown in Figure 2. The effect of applying
the kernel mask (14) to the refined and smoothed data is

8Ask = 2As

+Bs(4 cos(πΩ.X1) − 2 cos(πΩ.(X2 − X3)))
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Figure 9: Magnitudes in the limit for the butterfly scheme as a function of sampling frequency. Left: The signal
attenuation. Centre: The three artifacts Y1 (red), Y2 (green) and Y3 (blue). Right: The artifact energy as a percentage
of the attenuated signal.

+Cs(4 cos(πΩ.X2) − 2 cos(πΩ.(X1 − X3)))
+Ds(4 cos(πΩ.X3) − 2 cos(πΩ.(X1 − X2)))

8Bsk = As(4 cos(πΩ.X1) − 2 cos(πΩ.(X2 − X3)))
+2Bs

+Cs(4 cos(πΩ.X3) − 2 cos(πΩ.(X1 − X2)))
+Ds(4 cos(πΩ.X2) − 2 cos(πΩ.(X1 − X3))

8Csk = As(4 cos(πΩ.X2) − 2 cos(πΩ.(X1 − X3))
+Bs(4 cos(πΩ.X3) − 2 cos(πΩ.(X1 − X2)))
+2Cs

+Ds(4 cos(πΩ.X1) − 2 cos(πΩ.(X2 − X3)))
8Dsk = As(4 cos(πΩ.X3) − 2 cos(πΩ.(X1 − X2)))

+Bs(4 cos(πΩ.X2) − 2 cos(πΩ.(X1 − X3))
+Cs(4 cos(πΩ.X1) − 2 cos(πΩ.(X2 − X3)))
+2Ds

Substituting c1, c2 and c3 for cos(πΩ.X1), cos(πΩ.X2) and cos(πΩ.X3) respectively, and c12, c23
and c13 for cos(πΩ.(X1 − X2)), cos(πΩ.(X2 − X3)) and cos(πΩ.(X1 − X3) we write the above in
matrix notation as
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(15)

We therefore can determine the signal and artifact magnitude after one step of butterfly subdivision
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(16)

where KN = NKN/4.
This gives

ask = (1 + 2c1 − c23 + 2c2 − c13 + 2c3 − c12)/4 × (1 + c1 + c2 + c3)/4
bsk = (1 + 2c1 − c23 − 2c2 + c13 − 2c3 + c12)/4 × (1 + c1 − c2 − c3)/4
csk = (1 − 2c1 + c23 + 2c2 − c13 − 2c3 + c12)/4 × (1 − c1 + c2 − c3)/4
dsk = (1 − 2c1 + c23 − 2c2 + c13 + 2c3 − c12)/4 × (1 − c1 − c2 + c3)/4

Because the scheme is interpolating the magnitudes determined in this way also apply to the
limit surface. The results are summarised in Table 2. The magnitudes of three artifact components
are shown individually in Figure 8. The signal magnitude, the sum of the three artifact components
and the corresponding artifact energy as a percentage of remaining signal in the limit are shown in
Figure 9.

3.3. An interpolating scheme with two smoothing stages
We now consider a novel scheme which, like the Loop scheme (Loop, 1987) discussed in Sec-

tion 3.1, has two smoothing stages in each of the grid directions but, unlike the Loop scheme,
interpolates original control points. We construct this by designing the kernel K to give interpola-
tion while having a small a footprint as possible. The scheme has the following mask:
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This is equivalent to the convolution of two smoothing masks (3) and a kernel mask given by

K = 1
4


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







. (18)

The kernel is treated as before. Let Ask, Bsk, Csk and Dsk be the magnitudes at vertices in the
triangular mesh after the kernel has been applied to the refined and smoothed data. The effect of
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α (5 − c1 − c2 − c3)(1 + c1 + c2 + c3)2/32
β (5 − c1 + c2 + c3)(1 + c1 − c2 − c3)2/32
γ (5 + c1 − c2 + c3)(1 − c1 + c2 − c3)2/32
δ (5 + c1 + c2 − c3)(1 − c1 − c2 + c3)2/32

Table 3: The signal and artifact magnitudes in the limit surface when using the interpolating Loop subdivision scheme,
whereα is the signal magnitude and β, γ and δ are the magnitudes of artifacts in the Y1, Y2 and Y3 direction respectively.
The expressions c1, c2 and c3 stand for cos(πΩ.X1), cos(πΩ.X2) and cos(πΩ.X3) respectively.
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Figure 10: The three artifact components in the limit surface when using the interpolating Loop scheme.

applying the kernel can then be described as

4Ask = 10As − 2Bs cos(πΩ.X1) − 2Cs cos(πΩ.X2) − 2Ds cos(πΩ.X3)
4Bsk = −2As cos(πΩ.X1) + 10Bs − 2Cs cos(πΩ.X3) − 2Ds cos(πΩ.X2)
4Csk = −2As cos(πΩ.X2) − 2Bs cos(πΩ.X3) + 10Cs − 2Ds cos(πΩ.X1)
4Dsk = −2As cos(πΩ.X3) − 2Bs cos(πΩ.X2) − 2Cs cos(πΩ.X1) + 10Ds

Substituting c1, c2 and c3 for cos(πΩ.X1/2), cos(πΩ.X2/2) and cos(πΩ.X3/2) respectively, the
matrix notation is
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. (19)

We therefore can determine the signal and artifact magnitude after one step of subdivision as
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, (20)

where KN = NKN/4. This can be rewritten as
ask = (10 − 2c1 − 2c2 − 2c3)/4 × (1 + c1 + c2 + c3)2/16
bsk = (10 − 2c1 + 2c2 + 2c3)/4 × (1 + c1 − c2 − c3)2/16
csk = (10 + 2c1 − 2c2 + 2c3)/4 × (1 − c1 + c2 − c3)2/16
dsk = (10 + 2c1 + 2c2 − 2c3)/4 × (1 − c1 − c2 + c3)2/16.
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Figure 11: Magnitudes in the limit for the interpolating scheme with two smoothing stages shown as a function of
sampling frequency. Left: The signal attenuation. Centre: The three artifacts Y1 (red), Y2 (green) and Y3 (blue). Right:
The artifact energy as a percentage of the attenuated signal.

Because the scheme is interpolating the magnitudes determined in this way also apply to the limit
surface. The result is summarised in Table 3.

4. Summary and Discussion
We apply subdivision as a tool of analysis to determine the magnitude of signal and artifact

components in box-spline and subdivision surfaces.
One subdivision step can be viewed as a multi-stage process involving a refinement stage fol-

lowed by one or more smoothing stages. We can analyse the effect of each factor on the input data
separately. We show that artifact components are inevitably introduced in the refinement stage.
For a binary subdivision step the surface after refinement is made up of a signal component and
three artifact components correspondent to the grid lines. The signal and the artifact components
are then smoothed out in subsequent smoothing stages.

When handling schemes not based on box-splines we may encounter, alongside refinement and
smoothing stages, a kernel from which no more smoothing stages can be extracted. The kernel
can be analysed employing the same mechanism used to establish the effect of smoothing. By
analysing the effect of the smoothing stages and the kernel on both the input signal and the artifact
components introduced during refinement, we are able to make a statement about their magnitude
after one subdivision step.

The magnitude of the signal and artifact component after one subdivision step will be further
reduced with further subdivision steps. For high end engineering applications many subdivision
steps are needed to achieve the required accuracy of subdivision limit surfaces. From the eigen-
structure of the subdivision matrix we derive a limit stencil which is employed to derive artifact
magnitudes on the limit surface of a particular scheme.

The previously presented framework for analysing artifacts present in the limit surfaces (Sabin
et al., 2005; Augsdörfer et al., 2009) proved difficult to apply to surfaces based on triangular
meshes. The work presented here shows a framework that is easily applied to triangular schemes.
We derive generic expression in matrix form for the effects of refinement and smoothing is fur-
ther extended to account for a kernel and determine the effect in the limit. We demonstrate the
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Figure 12: The artifact energy as a function of remaining signal for the three schemes analysed, all shown with the
same scale: The Loop (left), the Butterfly (centre) and the interpolating Loop scheme (right).

framework by analysing box-spline and subdivision surfaces based on triangular meshes. Three
schemes are analysed: Loop subdivision (Loop, 1987), Butterfly subdivision (Dyn et al., 1990)
and a novel interpolating scheme with two smoothing stages.

As expected both interpolating subdivision schemes retain the initial signal information well.
However, due to large artifacts introduced in the limit surfaces, these schemes will be made up of
a higher percentage of artifact than the limit surface of the Loop subdivision scheme, see Figure
12.

The key observation is that Loop is far more tolerant to features sampled near the Nyquist limit
than are the interpolating schemes. The practical outcome of this is that the interpolating schemes
need a higher density of vertices in the initial sampling mesh to achieve the same quality of limit
surface.
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