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Abstract
When using NURBS or subdivision surfaces as a design tool in engineering applications, designers
face certain challenges. One of these is the presence of artifacts. An artifact is a feature of the
surface that cannot be avoided by movement of control points by the designer. This implies that
the surface contains spatial frequencies greater than one cycle per two control points. These are
seen as ripples in the surface and are found in NURBS and subdivision surfaces and potentially in
all surfaces specified in terms of polyhedrons of control points.

Ideally, this difference between designer intent and what emerges as a surface should be elim-
inated. The first step to achieving this is by understanding and quantifying the artifact observed in
the surface.

We present methods for analysing the magnitude of artifacts in a surface defined by a quadri-
lateral control mesh. We use the subdivision process as a tool for analysis. Our results provide a
measure of surface artifacts with respect to initial control point sampling for all B-Splines, quadri-
lateral box-spline surfaces and regular regions of subdivision surfaces. We use four subdivision
schemes as working examples: the three box-spline subdivision schemes, Catmull-Clark (cubic
B-spline), 4-3, 4-8; and Kobbelt’s interpolating scheme.
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1. Introduction

The design of NURBS or subdivision surfaces involves two steps: First, the designer translates
his mental image of a shape into the definition of a polyhedron. Then, the B-spline function or
subdivision scheme determines the surface corresponding to that polyhedron.

We can divide the surface into components with spatial frequencies below the Nyquist limit
and those with spatial frequencies above. The designer can control the first group of components
by moving control points, and so we assume that this group gives in some sense the desired curve.
However, the designer cannot control the second group and these are what we call artifacts.
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Figure 1: Left: A quadrilateral control mesh with a surface feature not aligned with grid lines but aligned diagonally.
Centre: the control mesh is refined using a subdivision scheme with (1 + z) factors along the grid directions only.
Lateral artifacts are clearly visible. Right: the control mesh has been subdivided using a scheme with (1 + z) factors
along the grid direction and diagonal directions.

To be able to make an appropriate choice of which scheme and how many control vertices to
use we need to provide the designer with the information of exactly how artifacts vary with the
scheme and sampling density.

In our work we show how artifacts vary with respect to the sampling density and how large
they are at any given sampling density. We explain how subdivision can be employed as a tool for
the analysis of artifacts which appear in the surface and which are not controllable by the designer.
The mechanism described provides a uniform framework for analysing artifacts present in regular
regions of subdivision surfaces as well as in bivariate B-splines and quadrilateral box-splines.

Subdivision is an algorithmic technique to generate smooth surfaces as the limit of a sequence
of successively refined polyhedra. Each subdivision step can be viewed as a multi stage process
involving a refinement or sampling stage followed by one or more smoothing stages. We show that
artifact components are inevitably introduced in the sampling stage. The signal and the artifact
components are then both smoothed out in subsequent smoothing stages. In the limit this process
will result in a B-spline surface the degree of which depends on the number of smoothing stages
in each subdivision step. When handling schemes not based on B-splines we may encounter,
alongside simple sampling and smoothing stages, a kernel from which no more smoothing stages
can be extracted. By analysing the effect of the smoothing stages and the kernel on both the input
signal and the artifact components, we are able to make a statement about their magnitude after
one subdivision step.

The magnitude of the signal and artifact component after one subdivision step will be reduced
with further subdivision steps. We show how our framework of artifact analysis can be extended
to determine the magnitude of signal and artifact components in the limit curve or surface.

The analysis demonstrated here enables the designer to make a judgement on the necessary
density of control points to use to be within certain required error margins, and also supplies a
framework for the design of new algorithms, i.e. the analysis provides us with a tool to design
schemes for which the error/artifact is zero at a certain sampling frequency.

2. Types of artifacts

Sabin et al. (2005) analysed artifacts in the univariate case. In the bivariate case, Sabin and
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Figure 2: The input mesh (black) has been sampled from a sinusoidal surface (grey) of the form cos(2πΩ.(x, y)). In
this example Ω = [0.1, 0.2]. Points indicate the vertices of the control polyhedron.

Barthe (2003) identified two types of artifacts in the regular regions of subdivision surfaces: lon-
gitudinal artifacts, which are analogous to the univariate artifact and have the same direction as
an intended feature of the surface; and lateral artifacts, which have a different direction across the
surface to the intended feature. The other two artifacts identified by Sabin and Barthe (2003) relate
to the effects of extraordinary points in subdivision surfaces. We have studied these in (Augsdörfer
et al., 2006) and do not repeat that material here.

2.1. Longitudinal artifacts
Longitudinal artifacts are associated with the approximating error introduced in the sampling

process. Although these artifacts are generally mild in effect, slightly altering the shape of the pro-
files involved, they are present for any surface with a uniform, stationary subdivision construction
(which includes B-splines). These artifacts can be reduced, but not eliminated, either by choosing
a subdivision scheme based on a B-spline of higher degree or by increasing the density of control
points. The first has the disadvantage of giving looser control (larger support); for these schemes
altering the position of one point will have an effect on a wider range of surrounding points which
may not be the designer’s intention. The latter has the disadvantage that more data has to be
provided and that subsequent modifications require the movement of more control points.

2.2. Lateral artifacts
Lateral surface artifacts are more readily visible and occur when an extrusion runs in a direction

not aligned with the underlying grid. An example of a lateral surface artifact is shown in Figure 1.
For binary subdivision schemes, directions for which these artifacts do not occur have been

identified by Peters and Shiue (2004) as those in which the symbol of the mask of the scheme has
a (1+ z) factor. Details on why this is so are given in Section 3. There are four directions in which
the (1 + z) factors may be extracted from the mask. In this paper we use the arrow notation ↑→ for
axis aligned (1 + z) factors and ↖↗ for diagonal (1 + z) factors of a scheme. This notation was
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first introduced by Dodgson et al. (2009).

In the surface artifact analysis both longitudinal and lateral artifacts result from one mechanism
and our analysis considers them together. In Section 5 we discuss a way of extracting information
about lateral artifacts alone from results obtained from the joint analysis.

3. Method of analysis

In order to analyse the behaviour we sample the original data, AJ , J ∈ Z
2, from a 2D sine wave

of frequencyΩ, measured in units of complete cycles per original vertex. An actual data set can be
regarded as the sum of such components by Fourier theory, and, because the system updating from
one step to the next is linear, we can separate the initial data into components of different spatial
frequency, and look at the response of each component as a function of frequency. The effect on
the total is the sum of the effects on the separate spatial frequency components.

The analysis for surfaces follows closely the univariate analysis, discussed by Sabin et al.
(2005), except that abscissa positions and spatial frequencies are now bivariate objects.

We use the letter J = (x, y), x, y ∈ Z, to denote the grid points before refinement and
P = (px, py), px, py ∈ Z for the grid points after sampling. The bivariate spatial frequency,
Ω, is represented as a vector with two components, ωx and ωy, where ωx measures the number of
complete cycles per point along the x axis and ωy measures the number of complete cycles per
point along the y axis. A short vector Ω implies long distances between crests and thus a low
sampling frequency.

The input mesh is given by AJ = eiπΩ·2J = TΩ·2J , where T = eiπ. An example of an input mesh
is shown in Figure 2.

3.1. Artifacts after one subdivision step
A subdivision step creates a new finer mesh by constructing new vertices as linear combina-

tions of old ones. The coefficients of the linear combinations can be depicted as a mask, which
documents the coefficients by which a given old vertex influences the surrounding new ones. Many
properties of the limit subdivision surface can be determined by analysing the mask of a subdivi-
sion scheme. A useful tool for analysis is the z-transform of a mask.

Sabin et al. (2005) showed how a subdivision matrix can be factorised into a sampling matrix
and a filter matrix. The filter matrix can be further factorised into a number of smoothing matrices
and a kernel. The circulant factors in the smoothing matrices correspond to the (1 + z) factors,
referred to as smoothing factors, of the z-transform of the mask for a scheme (Dyn, 2002). The
number of circulant smoothing matrices which can be extracted from the filter matrix is equivalent
to the number of smoothing factors which can be extracted from the z-transform of the mask of
a scheme. The kernel is what remains after all the smoothing factors have been extracted. For
example the mask of the Catmull and Clark (1978) subdivision scheme for regular regions in the
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Figure 3: Parameter space of a quadrilateral grid and the labelling used in Section 3. The mesh before sampling is
shown in blue. The mesh after sampling is not shown. X1 and X2 are unit shifts in the newly sampled mesh.

mesh can be resolved into four smoothing factors and a unit kernel such that
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which corresponds to a z-transform of

4
(

1 + z1

2

)4 (

1 + z2

2

)4

or, in arrow notation,

↑
↑
↑
↑→→→→

We assume the validity of the partitioning of the subdivision process into first a sampling
stage, with insertion of zero elements at all new positions, followed by a series of convolutions
with smoothing factors of the mask as discussed by Sabin et al. (2005).

3.1.1. The effect of sampling
We use the symbols X1 and X2 to denote the unit shifts in the abscissa plane along the two grid

directions of the sampled rectangular grid. Thus X1 + X2 and X1 − X2 become shifts in diagonal
directions, see Figure 3.

In a binary scheme sampling multiplies the original values by 4 and inserts zero values on mid
edges and mid faces, such that

S 2J = 4AJ

S 2J+X1 = 0
S 2J+X2 = 0

S 2J+(X1+X2) = 0



submitted to Computer Aided Geometric Design 6

On a rectangular grid the sampling process may be viewed as a tensor product:

S p = TΩ·P(1 + cos(πX1·P)) (1 + cos(πX2·P))
= TΩ·P

+ TΩ·P(T X1·P + T−X1·P)/2
+ TΩ·P(T X2·P + T−X2·P)/2
+ TΩ·P(T (X1+X2)·P + T−(X1+X2)·P)/4
+ TΩ·P(T (X1−X2)·P + T−(X1−X2)·P)/4.

We thus have diagonal artifacts as well as those along the grid lines expected from the tensor prod-
uct formulation. When we consider a signal which is neither oriented along nor perpendicular to
the grid edges, the artifacts, which remain aligned relative to the grid, can no longer be described as
purely longitudinal (along the features) or purely lateral (diagonal or across the surface features).

We can rewrite the above as

S P = TΩ·P

+ TΩ·P(T X1·P + T−X1·P)/2
+ TΩ·P(T X2·P + T−X2·P)/2
+ TΩ·P(T X1·P + T−X1·P)(T X2·P + T−X2·P)/4.

Hence, the artifact terms in the two different diagonal directions are linked and we have only three
independent artifact terms.

This shows that a binary sampling stage on a quadrilateral grid results in a surface which is
made up of four components of shape given by

a TΩ·P,
b TΩ·P(T X1·P + T−X1·P)/2,
c TΩ·P(T X2·P + T−X2·P)/2,
d TΩ·P(T X1·P + T−X1·P)(T X2·P + T−X2·P)/4

where a, b, c and d are the respective magnitudes of the signal component, the artifact component
in X1 direction, the artifact component in X2 direction and the artifact component in the diagonal
directions D. After sampling, each component has unit amplitude, that is a = b = c = d = 1.

In the following section we determine how much the amplitudes of the four components alter
in the subsequent smoothing stages.

3.1.2. The effect of smoothing
Each smoothing stage involves assigning the mean of its direct neighbouring points to a vertex.

A smoothing stage along the gridlines in a quadrilateral mesh can be viewed as a tensor product
of single smoothing stages, [1 1]/2, in the grid directions. It is given by

1
2

[ 1
1

]

· [ 1 1 ] /2 = 1
4

[ 1 1
1 1

]

. (1)
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X1−X2
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s2
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Table 1: The table lists the effect of two smoothing steps [1 2 1]/4 in direction H on the four components of the
sampled surface after one step of subdivision. The first column shows the amplification of the signal term, V = 0, and
the latter three show the artifact term depending on direction of artifact component, V = X1, X2, or D, where D is
the artifact component in both diagonal directions combined. Terms cos(πΩ·H/2) and sin(πΩ·H/2) are here and in all
following tables written as cH and sH for simplicity.
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Figure 4: The artifact amplitude depends on the sampling frequencies ωx and ωy, and is a sum of the amplitude of
the three artifact components. Here, we show the amplitude of the three components, each plotted as functions of
the sampling frequencies, after one subdivision step. These are 2D plots of the Ω parameter space. Note, that the
diagonal artifact component is smaller than the components along the grid lines and only reaches a maximum of 0.15
for the sampling frequencies shown here. The subdivision step contains one single smoothing stage along each grid
line direction of a quadrilateral mesh. In arrow notation this is . The smoothing filter is: .↑→ 1

4

[ 1 1
1 1

]

In arrow notation this reads ↑→ . Additional smoothing diagonally to the gridlines requires convo-
lution with the appropriate stencils
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. (2)

In arrow notation this stencil reads ↑→↖↗ , it has one smoothing stage in all four directions.
Taking the smoothing stages in pairs makes the analysis simpler (Sabin, 2002). We will demon-

strate the effect of smoothing on each term by means of a double smoothing stage, [1 2 1]/4, in
each direction. We can deal with smoothing in each direction independently.

Consider first the signal term, TΩ·P. The convolution of this with [1 2 1]/4 in direction H,
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Figure 5: The effect of a single subdivision step on the three artifact components is examined as in Figure 4. Note
the difference in scaling compared to Figure 4. Here, the subdivision step contains one smoothing stage in all four
directions of a quadrilateral mesh (along the grid lines and both diagonal directions). In arrow notation this is .
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where H is X1, X2, X1 + X2 or X1 − X2, yields
(

TΩ·[P−H] + 2TΩ·P + TΩ·[P+H]
)

/4
= TΩ·P cos2(πΩ·H/2). (3)

If Ω and H lie in the same direction, their dot-product (Ω·H) returns a non-zero scalar. However,
if Ω is perpendicular to the smoothing direction H, their dot-product is zero (Ω·H) = 0 and no
scaling occurs.

Next, consider the two artifact components along the grid-lines given by (T V·P + T−V·P)/2,
with V being a direction X1 or X2. The convolution with [1 2 1]/4 in direction H of this artifact
component is

(

TΩ·[P−H]
(

T V·[P−H] + T−V·[P−H]
)

+ 2TΩ·P
(

T V·[P] + T−V·[P]
)

+ TΩ·[P+H]
(

T V·[P+H] + T−V·[P+H]
) )

/8

= TΩ·P
(

T−Ω·H(T V·PT−V·H + T−V·PT V·H) + 2(T V·P + T−V·P) + TΩ·H(T V·PT V·H + T−V·PT−V·H)
)

/8.

There are only two cases to consider.
In one case, when the dot-product (V ·H) = 0, then T V·H = T−V·H = 1 and the above expression

simplifies to

TΩ·P
(

T−Ω·H(T V·P + T−V·P) + 2(T V·P + T−V·P) + TΩ·H(T V·P + T−V·P)
)

/8

=
(

TΩ·P(T V·P + T−V·P)/2
)

cos2(πΩ·H/2), (4)

so that the artifact component is multiplied by cos2(πΩ·H/2). This only happens when the smooth-
ing runs perpendicular to the artifact direction.
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Figure 6: The surface artifact energy is examined after one subdivision step containing four smoothing stages. Left: a
scheme with two smoothing stages applied in each of the X1 and X2 direction, as for linear B-splines. Right: a scheme
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In the second case, when (V ·H) = 1, then T V·H = T−V·H = −1, a similar manipulation shows
that the artifact component is multiplied by sin2(πΩ·H/2). This occurs if the smoothing runs along
the artifact component.

For artifact terms diagonal to the grid-lines smoothing has the effect:

= TΩ·P
(

T−Ω·H(T X1·PT−X1·H + T−X1·PT X1·H) (T X2·PT−X2·H + T−X2·PT X2·H)
+ 2(T X1·P + T−X1·P)(T X2·P + T−X2·P)
+TΩ·H(T X1·PT X1·H + T−X1·PT−X1·H) (T X2·PT X2·H + T−X2·PT−X2·H)

)

/4.

If the smoothing is along the grid lines, i.e. H = X1 or H = X2, the above expression simplifies to
(

TΩ·P(T X1·P + T−X1·P)(T X2·P + T−X2·P)/4
)

sin2(πΩ·H/2). (5)

In the case when the smoothing is applied in either of the diagonal directions it simplifies to
(

TΩ·P(T X1·P + T−X1·P)(T X2·P + T−X2·P)/4
)

cos2(πΩ·H/2). (6)

We tabulate these results in Table 1.

4. Visualising artifact magnitudes

We can visualise the effect smoothing has on each of the three artifact magnitudes as a function
of sampling frequencies ωx and ωy in a 2D plot as in Figures 4 and 5.

Often the impact of each of the individual artifact components is not important, and a more
useful indication of the quality of a scheme is obtained by computing their combined mean energy,
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Figure 7: The signal attenuation (left) and the energy of the artifact as a percentage of signal component (right) are
examined after one subdivision step containing four smoothing stages. Top: a scheme with two smoothing stages in
the X1 and X2 direction (top row) as for linear B-splines. Bottom: a scheme with one smoothing stage in X1, X2 and
both diagonal directions (bottom row). The smoothing filters are as for Figure 6. These figures show that, although it
increases the signal attenuation, including smoothing operations in the diagonal directions leads to an improved signal
to artifact ratio.

given by
√

(b2 + c2 + d2)/3. Figure 6 compares the artifact energy after one subdivision step of
two different subdivision schemes, each including four smoothing stages but in different directions.

It is also useful to show how the signal amplitude deteriorates for different sampling frequen-
cies, as shown in Figure 7, on the left. The signal deterioration is a measure of how much of the
initial information we are seeing at a given sampling rate. The grey scale visualisation, as used
in Figures 4 – 7, readily reveals the quality of a scheme to the designer: the brighter the image,
the more signal information has been retained or the smaller the magnitude of the artifact. Dark
regions indicate big losses in signal information or a large artifact magnitude.

To get an indication of how visible the artifacts are in the surface, we should view them in
relation to the remaining signal. If the artifacts are large in comparison to the attenuated signal
they will be more visible in the smoothed surface, because a larger percentage of what we see is
artifacts. It is therefore sensible to express the artifact as a percentage of the attenuated signal,
(100/a)

√

b2 + c2 + d2/3, see Figure 7, right.
The more smoothing stages are introduced the more the signal deteriorates and the more the

artifact gets smoothed out. The choice of direction of smoothing also has an impact; Figure 6
demonstrates the dramatic effect of diagonal smoothing by comparing the artifact energy of two
schemes with four smoothing stages. On the left smoothing has only been applied along the grid
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lines, as in B-splines, while on the right the scheme also includes diagonal smoothing stages.
Instead of plotting continuously varying grey scales, detail can be revealed more readily show-

ing contour lines by delineating ranges of magnitudes, as in Figure 8. Diagonal smoothing on
its own does not couple the vertex- and mid-face vertices with the mid-edge vertices. As can be
clearly seen in the array of figures in Figure 8, if the scheme includes only diagonal smoothing,
artifacts are present at low frequences because of this lack of coupling. On the other hand, adding
diagonal smoothing to axis-aligned smoothing appears to be beneficial.

5. Magnitudes of lateral artifacts

As pointed out in the introduction, lateral artifacts in the limit surface are more visible than
longitudinal artifacts. However, longitudinal and lateral artifacts are dealt with simultaneously in
the bivariate analysis presented here and the magnitudes presented are compositions of both types
of artifacts. To make an estimate about each type of artifact separately, we have to concentrate our
attention on those parts of the artifact components where the extrusion of the data does not run
along a smoothing direction. These type of extrusions, although both kinds of artifacts are present,
will primarily be subjected to lateral artifacts.

To extract the lateral artifact information from the X1 and X2 artifact components, we determine
the angle φ1 between the extrusion of the data and one of the grid line directions, e.g. X1.

cos(φ1) ||Ω|| ||X1|| = Ω·X1

φ1 = cos−1
(

Ω·X1

||Ω||

)

To determine the lateral artifact magnitude in the X1 artifact component we multiply the component
by sin(φ1). The other angle to consider is φ2 between the extrusion of the data and the grid line
direction X2, and we will multiply the X2 artifact component by sin(φ2).

To extract the lateral artifact from the D artifact component we determine the angles φd1 and
φd2 , between the extrusion of the data and the diagonal directions X1 +X2 and X1−X2 respectively.
Because the D artifact component contains the amount of artifact in both diagonal directions, we
multiply the D artifact component by sin(φd1) sin(φd2). This is a somewhat ad-hoc choice, justified
only by the facts that it gives zeros matching the results of Peters and Shiue (2004) and that it
provides a means of comparing different schemes without obvious bias.

We compare the energy of the lateral artifact in Figure 9. On the left, the lateral artifact for B-
splines is shown, where no diagonal smoothing is present. On the right, smoothing in the diagonal
direction has been added. The lateral artifact is considerably smaller for box-spline surfaces which
include diagonal smoothing operations.

6. Artifacts in the limit

Table 1 lists artifact amplifications after a single subdivision step involving two smoothing
stages. However, we have found that examining the response of the configuration after one sub-
division step may overestimate the artifact present in the limit surface. In our analysis we aim to
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Figure 8: The artifact energy after one subdivision step is shown as a function of a wide range of Ω = [ωx, ωy]. The
number of smoothing stages along the grid lines increase from left to right, ((1+z1)/2)g((1+z2)/2)g, g ∈ [0, 1, 2, 3]. The
number of diagonal smoothing stages increases from top to bottom, ((1 + z1z2)/2)d ((1 + z2/z1)/2)d, d ∈ [0, 1, 2, 3].
Schemes with equal numbers of smoothing stages therefore appear on upwardly sloped diagonals in the array of plots.
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Figure 9: The energy of the lateral artifact only is plotted as a function of Ω = [ωx, ωy] after one subdivision step.
Figures on the left are obtained after a subdivision step including smoothing operations in the grid line directions
only, while figures on the right are obtained after a subdivision step which also includes smoothing operations in both
diagonal directions. Top: A single smoothing stage in the grid line directions. Bottom: Two smoothing stages in
the grid line directions. Increasing the number of smoothing operations in the grid line directions in a subdivision
step reduces the lateral artifact energy. But adding an extra smoothing operation in the diagonal operation reduces
the lateral artifact energy considerably and thus reduce the appearance of ripples along the ridge of extruded features
which are not aligned with the underlying mesh grid. The bottom left and top right schemes have the same number of
arrows, but obviously different lateral artifact magnitudes. Note the difference in scales.

determine the amplitude of the four shape components which make up the limit surface L(P) such
that

L(P) = αTΩ·P

+ βTΩ·P cos(πX1)
+ γTΩ·P cos(πX2)
+ δTΩ·P cos(πX1) cos(πX2)

where α, β, γ and δ are the magnitudes of signal and the three artifact components in the limit
surface respectively.

In order to establish the effect of the subdivision process on the limit surface we have to identify
points on the limit surface. Properties of the limit surface can be derived by a standard examination
of the eigenstructure of the local subdivision matrix corresponding to the adopted subdivision
scheme. The key to analysing the artifact of a subdivision surface in the limit is the row eigenvector
corresponding to the dominant eigenvalue (Halstead et al., 1993). From this row eigenvector we
can derive a limit stencil to determine points on the limit surface.

There are two ways of identifying the artifact in the limit: analysing one subdivision step and
then the effect of the limit stencil or looking at the limit surface directly using limit stencils for
vertex points, mid face points and mid edge points. To demonstrate this, we apply both methods
to each of the examples discussed.
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7. Examples

As a first example we look at the simplest of all quadrilateral subdivision schemes, the sub-
division scheme based on the linear B-spline, before applying the same method of analysis to
four more frequently used schemes each of which demonstrates particular features. The Catmull-
Clark scheme (Catmull and Clark, 1978) is a widely used subdivision scheme based on the bicubic
B-spline. The analysis of this scheme demonstrates how to determine the signal and artifacts mag-
nitudes in the limit when not dealing with an interpolating scheme. The 4-3 box-spline scheme
(Peters and Shiue, 2004) uses diagonal smoothing terms. It was found not to lead to lateral ar-
tifacts for extrusions diagonally to the gridlines. By analysing the effect of diagonal smoothing
terms present in this scheme we demonstrate why this is the case. We then show that further im-
provements in the signal to artifact ratio can be achieved by adding further diagonal terms, using
the 4-8 box-spline scheme (Velho and Zorin, 2001) as an example. Finally, we demonstrate how to
handle the presence of a kernel in combination with smoothing terms using Kobbelt’s interpolating
scheme (Kobbelt, 1996) which is a subdivision scheme not based on a box-spline.

7.1. The bilinear B-spline
The mask of the subdivision scheme which leads to a bilinear B-spline surface in the limit is

1
4



























1 2 1
2 4 2
1 2 1



























(7)

The z-transform of the mask of this scheme can be factorised into

4
(

1 + z1

2

)2 (

1 + z2

2

)2

or ↑
↑→→

(8)

Hence, the bilinear B-spline has one [1 2 1]/4 factor in each grid direction and no diagonal smooth-
ing. We can determine the signal and artifact magnitudes by multiplying together the appropriate
number of factors from Table 1.

Because the scheme is interpolating, points of the initial control polyhedron lie on the limit
surface. The results for the signal and artifact amplitude in the limit surface are listed in Table 2.
In Figure 10 we show the signal deterioration, the artifact energy as a percentage of the remaining
signal and the magnitude of the lateral artifact as a function of sampling frequencies. The mag-
nitude of the lateral artifact associated with the linear B-spline, shown in Figure 10, right, was
already discussed in Section 5.

7.1.1. Looking at the limit surface directly
We can look at the limit surface directly using the limit stencils derived from the row eigenvec-

tor corresponding to the dominant eigenvalue. The attenuation of the signal is determined by fitting
the best sinusoidal approximation to the limit surface. The amplification of one of the three artifact
components in the three directions (X1, X2, and diagonal) is given by the difference between the
sum of the artifact component and the signal and the two remaining artifact components.
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a = α c2
X1

c2
X2

b = β s2
X1

c2
X2

c = γ c2
X1

s2
X2

d = δ s2
X1

s2
X2

Table 2: The magnitude of the signal term, α, and the artifact terms in the bilinear B-spline surface, where β, γ and
δ are X1, X2 and diagonal direction artifact components respectively. Because the subdivision scheme based on the
bilinear B-spline is interpolating the control polyhedron the amplification terms after one step are the same as in the
limit surface.
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Figure 10: Results for the linear B-spline are shown as a function of sampling frequency. Left: the signal magnitude.
Centre: the artifact energy as a percentage of the attenuated signal. Right: the lateral artifact.

Because this is an interpolating scheme, we can read off four limit stencils directly from the
mask (7):

[4]/4 ,














1 1
1 1















/4 ,














2
2















/4 , and
[

2 2
]

/4.

namely a vertex limit stencil, the mid face limit stencil and the two mid edge limit stencils.
When convolving the vertex limit stencil with the signal, we just get the signal itself. Convolv-

ing the mid edge limit stencil with the signal we get
(

2TΩ·2(J−X1/2) + 2TΩ·2(J+X1/2)
)

/4 = TΩ·2J cos(πΩ·X1)

The other edge limit stencil gives the equivalent result in the other direction T Ω·2J cos(πΩ·X2).
Convolving the mid face limit stencil with the signal TΩ·2J we get the limit surface component

which is running diagonal to the grid-lines.
(

TΩ·2(J−(X1+X2)/2) + TΩ·2(J+(X1+X2)/2) + TΩ·2(J−(X1−X2)/2) + TΩ·2(J+(X1−X2)/2)
)

/4
= TΩ·2J cos(πΩ·X1) cos(πΩ·X2)

The sets of points obtained from these four stencils describe each a different sinusoidal surface,
namely: o TΩ·2J , p TΩ·2J , q TΩ·2J and r TΩ·2J , where o = 1, p = cos(πΩ·X1), q = cos(πΩ·X2) and
r = cos(πΩ·X1) cos(πΩ·X2). Any limit surface configuration can be expressed as the sum of these
four components.
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The best sinusoidal approximation to the limit surface, αTΩ·2J , is thus given by the mean of
these four components:

α TΩ·2J = TΩ·2J(o + p + q + r)/4 (9)
= cos2(πΩ·X1/2) cos2(πΩ·X2/2) TΩ·2J

For example, if Ω = (wx, 0), and the surface features vary in the x direction only, then α =
cos2(πwx/2) and we do not get any attenuation in the diagonal or X2 direction.

The three artifact components of the limit surface the X1, X2 and the diagonal direction respec-
tively, can be described as

β TΩ·2J = TΩ·2J((o + q) − (r + p))/4 (10)
= TΩ·2J (1 − cos(πΩ·X1)) (1 + cos(πΩ·X2)) /4
= sin2(πΩ·X1/2) cos2(πΩ·X2/2) TΩ·2J

γ TΩ·2J = TΩ·2J((o + p) − (r + q))/4 (11)
= TΩ·2J (1 + cos(πΩ·X1)) (1 − cos(πΩ·X2)) /4
= cos2(πΩ·X1/2) sin2(πΩ·X2/2) TΩ·2J

δ TΩ·2J = TΩ·2J((o + r) − (p + q))/4 (12)
= TΩ·2J (1 − cos(πΩ·X1)) (1 − cos(πΩ·X2)) /4
= sin2(πΩ·X1/2) sin2(πΩ·X2/2) TΩ·2J

These results for the artifact amplification in the various directions are equivalent to the results we
established earlier for the bilinear B-spline (see Table 2).

After demonstrating our method for the analysis of artifacts in the limit surface of a quadrilat-
eral mesh for this simple example, we now turn our attention to schemes which are more complex
and more commonly used.

7.2. The bicubic B-spline
In regular regions the Catmull-Clark subdivision scheme [Catmull and Clark (1978)] is a cubic

tensor product bivariate box spline subdivision scheme. The mask of the scheme is

1
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. (13)

Its z-transform is

4
(

1 + z1

2

)4 (

1 + z2
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or
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↑
↑
↑→→→→

(14)
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a c4
X1

c4
X2

b s4
X1

c4
X2

c c4
X1

s4
X2

d s4
X1

s4
X2

Table 3: The magnitude of signal, a, and artifact components b, c and d in the X1, X2, and diagonal direction respec-
tively, after one step using Catmull-Clark subdivision.
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Figure 11: The artifact energy as a percentage of the attenuated signal in the regular regions of the Catmull-Clark
surface as a function of sampling frequency. Left: After one subdivision step using the Catmull-Clark algorithm.
Right: The bicubic B-spline surface (regular regions of the Catmull-Clark limit surface).

Thus, the bicubic box spline has two [1 2 1]/4 smoothing factors in each of the grid line
directions. We can determine the artifact magnitude after one subdivision step by multiplying
together the appropriate number of factors from Table 1. There is no diagonal smoothing.

The artifact energy after one subdivision step is larger than the artifact energy in the limit,
see Figure 11. To determine the magnitudes of signal and artifact components of a bicubic B-
spline surface we have to apply the corresponding limit stencils derived from the row eigenvectors
corresponding to the dominant eigenvalue of the local subdivision matrix. In the regular regions
the limit stencil for the Catmull-Clark scheme is

1
36
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4 16 4
1 4 1



























,

which has the z-transform
(

1 + 4z1 + z1
2

6

) (

1 + 4z2 + z2
2

6

)

.

We can rewrite the z-transform of the limit stencil in terms of smoothing factors. We divide
the stencil written in z-transform notation by a power of z so that the central value corresponds to
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α c4
X1

c4
X2

(1 + 2c2
X1

)(1 + 2c2
X2

)/9
β s4

X1
c4

X2
(1 + 2s2

X1
)(1 + 2c2

X2
)/9

γ c4
X1

s4
X2

(1 + 2c2
X1

)(1 + 2s2
X2

)/9
δ s4

X1
s4

X2
(1 + 2s2

X1
)(1 + 2s2

X2
)/9

Table 4: The magnitude of signal, α, and artifact components β, γ and δ in the X1, X2, and diagonal direction respec-
tively, in the bicubic B-spline surface (regular regions of the Catmull-Clark limit surface).

z0 and do likewise with the double smoothing operator, which becomes (z−1 + 2z0 + z1)/4. This
leads to:

(z−1
1 + 4z0

1 + z1
1

6

) (z−1
2 + 4z0

2 + z2
1

6

)

=

(

1
3 +

2
3

(z−1
1 + 2z0

1 + z1
1

4

)) (

1
3 +

2
3

(z−1
2 + 2z0

2 + z1
2

4

))

(15)

The attenuation of the signal and the amplification of the artifacts in the three directions are
listed in Table 4.

7.2.1. Looking at the limit surface directly
Like for the bilinear B-spline, we can determine the signal attenuation and artifact amplifica-

tion from the limit surface directly. By convolving the mask of the scheme with the limit stencil
we can determine four limit stencils. The convolution of the mask with the limit stencil is
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We can simply read the four limit stencils off. The limit vertex stencil is the same as before the
convolution with the mask:
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.

By convolving the stencil with the initial input we get
(

TΩ·2(J−X1−X2) + 4TΩ·2(J−X2) + TΩ·2(J+X1−X2)

+ 4TΩ·2(J−X1) + 16TΩ·2J + 4TΩ·2(J+X1)

+ TΩ·2(J−X1+X2) + 4TΩ·2(J+X2) + TΩ·2(J+X1+X2)
)

/36

= TΩ·2J
(

1 + 2 cos2(πΩ·X1)
) (

1 + 2 cos2(πΩ·X2)
)

/9.
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Figure 12: Results for the bicubic B-spline (Catmull-Clark surface in the limit) as a function of sampling frequency.
Left: the signal magnitude. Centre: the artifact energy as a percentage of the attenuated signal. Right: the lateral
artifact.

One limit mid edge stencil is
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Its effect on the input signal is

TΩ·2J
(

1 + 2 cos2(πΩ·X1)
) (

cos3(πΩ·X2) + 5 cos(πΩ·X2)
)

/18.

The second limit edge point stencil is like the above but rotated by 90 degrees. Its effect on the
signal is

TΩ·2J
(

1 + 2 cos2(πΩ·X2)
) (

cos3(πΩ·X1) + 5 cos(πΩ·X1)
)

/18.

The limit mid face stencil is
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1 23 23 1







































.

Its effect on the input signal TΩ·2J is

TΩ·2J ((cos(3πΩ·X1) + 23 cos(πΩ·X1))/24) ((cos(3πΩ·X2) + 23 cos(πΩ·X2))/24) .

And because cos(3πΩ·X) = 4 cos3(πΩ·X) − 3 cos(πΩ·X) we have

TΩ·2J
(

cos3(πΩ·X1) + 5 cos(πΩ·X1)
) (

cos3(πΩ·X2) + 5 cos(πΩ·X2)
)

/36.
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The limit points determined from the four limit stencils describe four different surfaces: o T Ω·2J ,
p TΩ·2J , q TΩ·2J and r TΩ·2J , with

o = (1 + 2 cos2(πΩ·X1))(1 + 2 cos2(πΩ·X2))/9
p =

(

1 + 2 cos2(πΩ·X1)
) (

cos3(πΩ·X2) + 5 cos(πΩ·X2)
)

/18

q =
(

1 + 2 cos2(πΩ·X2)
) (

cos3(πΩ·X1) + 5 cos(πΩ·X1)
)

/18

r =
(

cos3(πΩ·X1) + 5 cos(πΩ·X1)
) (

cos3(πΩ·X2) + 5 cos(πΩ·X2)
)

/36

The best sinusoidal approximation to the limit surface is given by α T Ω·2J , and determined by
equation (9) and leads to a signal magnitude, α, given by

α = cos4(πΩ·X1/2) cos4(πΩ·X2/2)(1 + 2 cos2(πΩ·X1/2))(1 + 2 cos2(πΩ·X2/2))/9.

This result for the attenuation of the signal is the same as shown in Table 4, which was derived
looking at the effect of sampling and smoothing stages and the effect of the limit stencil of the
subdivision scheme.

The amplitudes β, γ and δ of the three artifact components of the limit surface in the X1, X2
and the diagonal direction respectively, are given by equations (10), (11) and (12) and lead equally
to the same results for the amplification of the three artifact terms as shown in Table 4.

By comparing our results for the bicubic B-spline surface (Figure 12) to those for the bilinear
B-spline surface (Figure 10) we find that by simply doubling the smoothing operations in the grid
line directions we are able to improve the signal to artifact ratio considerably, by a factor of about
10.

Next, we will see that further improvements can be achieved by adding diagonal smoothing
operations to each subdivision step.

7.3. The 4-3 box-spline
The 4-3 box-spline can model constant features without ripples both aligned with the quad

grid and diagonal to it [Peters and Shiue (2004)]. We are able to demonstrate this quality by
determining the magnitude of signal and artifact components as before.

The mask of the 4-3 scheme is
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. (16)

The z-transform of this mask is given by

4
(

1 + z1

2

)2 (

1 + z2

2

)2 (

1 + z1z2

2

) (

1 + z2/z1

2

)

or ↑
↑→→↖↗ (17)
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a c2
X1

c2
X2

cX1+X2 cX1−X2

b s2
X1

c2
X2

sX1+X2 sX1−X2

c c2
X1

s2
X2

sX1+X2 sX1−X2

d s2
X1

s2
X2

cX1+X2 cX1−X2

Table 5: The magnitude of the signal and artifact terms after one subdivision step when using the 4-3 scheme, where
b, c and d are the magnitudes of the artifacts in X1, X2 and diagonal direction respectively.

It has two smoothing stages in each axial grid direction and one in each diagonal direction. By
simply reading off the effect of the smoothing stages we get an artifact amplification after one
subdivision step as listed in Table 5.

The limit stencil for this scheme is given by

1
48



























1 6 1
6 20 6
1 6 1



























.

Its z-transform is

1
48

((

1 + 6z1 + z1
2
) (

1 + 6z2 + z2
2
)

− 16
)

.

As before we can rewrite the first part of the limit stencil in terms of smoothing factors as

[1 6 1] = (4 + 4([1 2 1]/4)) .

Its effect on the input signal is therefore

1
48

((

4 + 4 cos2(πΩ·X1/2)
) (

4 + 4 cos2(πΩ·X2/2)
)

− 16
)

=
((

1 + cos2(πΩ·X1/2)
) (

1 + cos2(πΩ·X2/2)
)

− 1
)

/3.

The amplification factors are multiplied to those after a single step as shown in Table 6.

7.3.1. Looking at the limit surface directly
We can determine the same results by looking at the limit surface directly. By convolving the

mask with the limit stencils we get four different set of points. While all of these points make up
the limit surface, each set can be approximated by a different sinusoidal surface.
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α c2
X1

c2
X2

cX1+X2 cX1−X2

(

(1 + c2
X1

)(1 + c2
X2

) − 1
)

/3
β s2

X1
c2

X2
sX1+X2 sX1−X2

(

(1 + s2
X1

)(1 + c2
X2

) − 1
)

/3
γ c2

X1
s2

X2
sX1+X2 sX1−X2

(

(1 + c2
X1

)(1 + s2
X2

) − 1
)

/3
δ s2

X1
s2

X2
cX1+X2 cX1−X2

(

(1 + s2
X1

)(1 + s2
X2

) − 1
)

/3

Table 6: The magnitude of the signal and artifact components in the 4-3 limit surface, where β, γ and δ are the X1, X2
and diagonal direction respectively.

We can read off four limit stencils directly from this. The vertex limit stencil is the same as before
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.

Its effect on the input data can be analysed either as before, or by convolving it with the initial
data:

(

TΩ·2(J−(X1+X2)) + 6TΩ·2(J−X2) + TΩ·2(J+(X1−X2))

+6TΩ·2(J−X1) + 20TΩ·2J + 6TΩ·2(J+X1)

+TΩ·2(J−(X1−X2)) + 6TΩ·2(J+X2) + TΩ·2(J+(X1+X2))
)

/48

= TΩ·2J
(

(1 + cos2(πΩ·X1))(1 + cos2(πΩ·X2)) − 1
)

/3.

The mid edge stencil is

1
768







































1 14 1
63 242 63
63 242 63
1 14 1







































.

Its effect on the initial data is
(

TΩ·2(J−X1−3X2/2) + 14TΩ·2(J−3X2/2) + TΩ·2(J+X1−3X2/2)

+ 63TΩ·2(J−X1−X2/2) + 242TΩ·2(J−X2/2) + 63TΩ·2(J+X1−X2/2)

+ 63TΩ·2(J−X1+X2/2) + 242TΩ·2(J+X2/2) + 63TΩ·2(J+X1+X2/2)

+ TΩ·2(J−X1+3X2/2) + 14TΩ·2(J+3X2/2) + TΩ·2(J+X1+3X2/2)
)

/768

= TΩ·2J cos(πΩ·X2)
(

5 + 15 cos2(πΩ·X1) + 3 cos2(πΩ·X2)

+ cos2(πΩ·X1) cos2(πΩ·X2)
)

/24

The second mid edge stencil is the same but rotated by 90◦ and its effect on the initial data is

TΩ·2J cos(πΩ·X1)
(

5 + 15 cos2(πΩ·X2) + 3 cos2(πΩ·X1)

+ cos2(πΩ·X2) cos2(πΩ·X1)
)

/24.
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Figure 13: Results for the 4-3 subdivision scheme in the limit as a function of sampling frequency. Left: the signal
magnitude. Centre: the artifact energy as a percentage of the attenuated signal. Right: the lateral artifact.

The mid face stencil is
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and its effect on the control data is
(

TΩ·2(J−X1/2−3X2/2) + TΩ·2(J+X1/2−3X2/2) + TΩ·2(J−3X1/2−X2/2) + 22TΩ·2(J−X1/2−X2/2)

+22TΩ·2(J+X1/2−X2/2) + TΩ·2(J+3X1/2−X2/2) + TΩ·2(J−3X1/2+X2/2) + 22TΩ·2(J−X1/2+X2/2)

+22TΩ·2(J+X1/2+X2/2) + TΩ·2(J+3X1/2+X2/2) +TΩ·2(J−X1/2+3X2/2) + TΩ·2(J+X1/2+3X2/2)
)

/96

= TΩ·2J
(

cos(πΩ·X1) cos(πΩ·X2)
(

cos2(πΩ·X1) + cos2(πΩ·X2) + 4
))

/6.

The limit points determined from the four limit stencils describe four different surfaces: o T Ω·2J ,
p TΩ·2J , q TΩ·2J and r TΩ·2J , with

o =
(

(1 + cos2(πΩ·X1))(1 + cos2(πΩ·X2)) − 1
)

/3

r = cos(πΩ·X1)
(

5 + 15 cos2(πΩ·X2) + 3 cos2(πΩ·X1) + cos2(πΩ·X2) cos2(πΩ·X1)
)

/24

q = cos(πΩ·X2)
(

5 + 15 cos2(πΩ·X1) + 3 cos2(πΩ·X2) + cos2(πΩ·X1) cos2(πΩ·X2)
)

/24

p =
(

cos(πΩ·X1) cos(πΩ·X2)
(

cos2(πΩ·X1) + cos2(πΩ·X2) + 4
))

/6

The best sinusoidal approximation to the limit surface is given by α T Ω·2J and derived using equa-
tion (9) and leads to a signal magnitude, α, given by

α = cos2(πΩ·X1) cos2(πΩ·X2)
×

(

cos2(πΩ·X1) cos2(πΩ·X2) − sin2(πΩ·X1) sin2(πΩ·X2)
)

×
((

1 + cos2(πΩ·X1)
) (

1 + cos2(πΩ·X2)
)

− 1
)

/3.
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This is equivalent to what has been noted down in Table 6. Calculations for β, γ and δ are derived
using equations (10), (11) and (12) respectively and yield the same results as shown in Table 6.

The most impressive improvements of the 4-3 box-spline scheme over the bicubic B-spline in
terms of signal to artifact ratio in its surface is for features extrusions in a direction diagonal to the
grid lines of the mesh.

We can already see from Table 5 that if extrusions run diagonal to the grid lines, the X1 and X2
artifact components are eliminated, because of the sin(πΩ·(X1 ± X2)/2) terms in the expressions
for the magnitude of the artifact components, which becomes zero if extrusion run diagonally.
Therefore, adding a diagonal smoothing stage considerably reduces the total artifact found in
diagonal extrusions. This confirms findings by Peters and Shiue (2004).

The reduction in artifact magnitude for extrusions diagonal to the grid lines is clearly visible
in Figures 13 centre and right. However, we expect small artifacts to remain if extrusions run not
entirely diagonal but at a smaller angle to the grid lines.

Next, we will see if we can improve upon this result by adding more smoothing operations in
the diagonal direction.

7.4. The 4-8 box-spline
The 4-8 subdivision scheme generalises the four-directional box spline [Velho and Zorin (2001)].

It can be viewed as
√

2 scheme on quadrilateral meshes. Two steps of this subdivision scheme
produce a binary scheme which can be examined using the analysis we applied to other binary
schemes. Two

√
2 masks can be convolved to produce the mask of the binary scheme:

1
64
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0 2 6 8 6 2 0
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2 8 18 24 18 8 2
1 6 14 18 14 6 1
0 2 6 8 6 2 0
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. (18)

Its z-transform is

4
(

1 + z1

2

)2 (

1 + z2

2

)2 (

1 + z1z2

2

)2 (

1 + z2/z1

2

)2

or
↑
↑→→↖↗

↖ ↗ (19)

The magnitude of signal and artifact after two steps of 4-8 subdivision are shown in Table 7.
To determine the amplification in the limit we have to apply the corresponding limit stencils.

The limit stencil for this scheme is given by:

1
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a c2
X1

c2
X2

c2
X1+X2

c2
X1−X2

b s2
X1

c2
X2

s2
X1+X2

s2
X1−X2

c c2
X1

s2
X2

s2
X1+X2

s2
X1−X2

d s2
X1

s2
X2

c2
X1+X2

c2
X1−X2

Table 7: The signal and artifact magnitude after two 4-8 subdivision steps, where b, c and d are the X1, X2 and diagonal
directions respectively.

α c2
X1

c2
X2

c2
X1+X2

c2
X1−X2

(

c2
X1

(1 + c2
X1

) + c2
X2

(1 + c2
X2

) + c2
X1

c2
X2

(c2
X1
+ c2

X2
+ 9)

)

/15
β s2

X1
c2

X2
s2

X1+X2
s2

X1−X2

(

s2
X1

(1 + s2
X1

) + c2
X2

(1 + c2
X2

) + s2
X1

c2
X2

(s2
X1
+ c2

X2
+ 9)

)

/15
γ c2

X1
s2

X2
s2

X1+X2
s2

X1−X2

(

c2
X1

(1 + c2
X1

) + s2
X2

(1 + s2
X2

) + c2
X1

s2
X2

(c2
X1
+ s2

X2
+ 9)

)

/15
δ s2

X1
s2

X2
c2

X1+X2
c2

X1−X2

(

s2
X1

(1 + s2
X1

) + s2
X2

(1 + s2
X2

) + s2
X1

s2
X2

(s2
X1
+ s2

X2
+ 9)

)

/15

Table 8: The signal and artifact magnitude in the limit surface when using the 4-8 box-spline scheme, where β, γ and
δ are the X1, X2 and diagonal direction respectively.

Its z-transform is
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+
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1 + z2

2
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/15.

The amplification terms for signal and artifact components resulting from this are listed in Table
8. The attenuation of the signal, the artifact energy as a percentage of the remaining signal and the
lateral artifact energy are shown as a function of sampling frequency in Figure 14.

The same result could be obtained looking at the 4-8 limit surface directly. However, limit sten-
cils for this scheme are very large and it is therefore easier to obtain signal and artifact magnitudes
in the limit surface using the single step analysis method.

The improvement achieved by adding one more smoothing operation in the diagonal direction
is significant. Comparing the results shown in Figure 14 to those plotted for the 4-3 scheme (Figure
13) we see that the improvement of the signal to artifact ratio is about a factor of 15, not only for
extrusions in directions diagonal to the grid lines, but for all extrusions.
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Figure 14: Results for the 4-8 scheme in the limit as a function of sampling frequency. Left: the signal magni-
tude. Centre: the artifact energy as a percentage of the attenuated signal. Right: The corresponding lateral artifact
magnitude.

7.5. Kobbelt’s interpolating box-spline
The Kobbelt (1996) scheme is an interpolatory tensor product scheme based on the univariate

4-point scheme (Dyn et al., 1987) and has the mask
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(20)

The z-transform of this mask can be factorised into
(

1 + z1

2

)4 (

1 + z2

2

)4 (−1 + 4z1 − z2
1

2

) (−1 + 4z2 − z2
2

2

)

(21)

This scheme is not based on a box-spline. We have four smoothing stages in each of the gridline
directions, like the bicubic B-spline discussed in Section 7.2, and a kernel.

The kernel,
(

−1 + 4z1 − z2
1

) (

−1 + 4z2 − z2
2

)

/4, can be expressed in terms of smoothing opera-
tors. We divide the kernel written in z-transform notation by a power of z so that the central value
corresponds to z0. This leads to

(−z−1
1 + 4z0

1 − z1

2

) (−z−1
2 + 4z0

2 − z2

2

)

=

(

3 − 2
(z−1

1 + 2z0
1 + z1

1

4

)) (

3 − 2
(z−1

2 + 2z0
2 + z1

2

4

))

(22)

Because the scheme is interpolating the initial control points lie on the limit surface and the mag-
nitudes of the signal and artifacts after one step, shown in Table 9, are the same as in the limit
surface.
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a = α c4
X1

c4
X2

(3 − 2c2
X1

)(3 − 2c2
X2

)
b = β s4

X1
c4

X2
(3 − 2s2

X1
)(3 − 2c2

X2
)

c = γ c4
X1

s4
X2

(3 − 2c2
X1

)(3 − 2s2
X2

)
d = δ s4

X1
s4

X2
(3 − 2s2

X1
)(3 − 2s2

X2
)

Table 9: The magnitude of the signal term, α, and the artifact terms in the regular regions of Kobbelt’s interpolating
subdivision surface, where β, γ and δ are magnitudes of the X1, X2 and diagonal direction artifact components respec-
tively. Because the subdivision scheme is interpolating the amplification terms after one step are the same as in the
limit surface.

The same results can be achieved when looking at the limit surface directly as demonstrated in
examples discussed in Sections 7.1 – 7.3. For this scheme, however, it is easier to determine the
amplitudes of the surface artifacts as shown here.

As can be clearly seen from Figure 15 the scheme retains the signal information better than the
non-interpolating schemes discussed. But for interpolating schemes the artifact increases more
than for non-interpolating schemes and as a result the artifact energy as a percentage of the re-
maining signal is large. The signal amplitude, the amplitude of the artifact energy as a percentage
of the remaining signal and the amplitude of the lateral artifact are shown in Figure 15. All results
are shown as a function of sampling frequency.
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Figure 15: Results for regular regions of Kobbelt’s interpolating subdivision scheme in the limit shown as a function
of sampling frequency. Left: the signal magnitude. Centre: the artifact energy as a percentage of the attenuated signal.
Right: The lateral artifact.

8. Summary

We have presented a uniform framework for analysing artifacts present in all surfaces which
are specified in terms of quadrilateral control polyhedrons, i.e. NURBS, box-splines and regular
subdivision surfaces. This complements our previous work on tuning the behaviour of subdivision
around extraordinary vertices (Augsdörfer et al., 2006).
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Figure 16: Top row: The artifact energy as a percentage of the attenuated signal of bicubic B-spline (top left), 4-3 (top
right), the 4-8 (bottom left) and Kobbelt’s interpolating subdivision scheme (bottom right) in the limit as a function of
sampling frequency. The result for all four schemes is shown on the same scale.

We examined two mechanisms to analyse the magnitude of signal and artifact component in
the limit surface: Firstly, by looking at the polyhedron after a single subdivision step in detail
before establishing the limit artifact. Secondly, by examining the limit surface directly.

One subdivision step can be viewed as a two stage process involving a refinement or sampling
stage followed by one or more smoothing stages. Artifact components are inevitably introduced
in the sampling stage and the surface after sampling is made up of four components: one signal
and three artifact components, one in the direction of each grid line and a third in the diagonal
direction. All four surface components are attenuated in subsequent smoothing stages. Depending
on the subdivision scheme smoothing stages involve different directions of smoothing. We show
that if diagonal smoothing directions are involved the lateral artifact is significantly reduced. This
is in accord with findings by Peters and Shiue (2004). This analysis also shows, for the first
time, that schemes need to have smoothing factors along gridlines, because diagonal smoothing
on its own will have the undesired effect to lead to large artifacts even for densely sampled control
meshes. When handling schemes not based on box-splines we may encounter, alongside simple
sampling and smoothing stages, a kernel from which no more smoothing stages can be extracted.
By analysing the effect of the smoothing stages and the kernel on both the signal and the artifact
components after sampling, we are able to make a statement about their magnitude after one
subdivision step.

The magnitude of the signal and artifact component after one subdivision step will be reduced
with further subdivision refinement steps. From the eigenstructure of the local subdivision matrix
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Figure 17: Top row: The lateral artifact energy of the bicubic B-spline (top left), 4-3 (top right), the 4-8 (bottom left)
and Kobbelt’s interpolating subdivision scheme (bottom right) in the limit as a function of sampling frequency. The
result for all four schemes is shown on the same scale.

we can derive a limit stencil which enables us to derive points on the limit surface of a scheme.
Again, by expressing the effect of a limit stencil in terms of mean smoothing and analysing its
effect we can determine the magnitude of signal and artifact components in the limit surface.

By employing the limit stencil, for binary schemes, after one subdivision step we effectively
look at vertex limit positions, mid face and mid edge limit positions of the input control mesh.
Instead of examining a single subdivision step first, we may look at vertex, mid face and mid
edge limit positions of the input control mesh directly by determining points on the limit surface
using the limit stencil. To determine the respective limit stencils for binary schemes, or indeed
any even scheme, we convolve the limit stencil with the mask of the scheme. For odd schemes,
the respective stencil can be directly determined from the eigenstructure of the local subdivision
matrix.

9. Conclusion

The analysis demonstrated here enables the designer to make a judgement on the necessary
density of control points to use to be within certain required error margins. In the future, it may
also help in the design of new box-spline algorithms, i.e. the analysis provides us with a tool to
design schemes for which the error/artifact is zero at a certain sampling frequency.

Comparing results for the bilinear B-spline, the bicubic B-spline (regular regions of Catmull-
Clark), the 4-3 box-spline, 4-8 box-spline and regular regions of Kobbelt’s interpolating subdivi-
sion surface, shown in Figures 16, it is evident that, among these five schemes, the best behaviour
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in terms of artifact magnitude in the limit is given by the 4-8 scheme.
This analysis can be applied to the regular regions of any quadrilateral subdivision surface. Its

extension to triangular schemes is not trivial and is the subject of other work (Augsdörfer et al.,
submitted to CAGD).
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