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A B S T R A C T

Artificial terrain synthesis is challenging because natural terrain contains many types
of features generated by a diverse range of natural processes over vastly different time-
scales. Example-based terrain synthesis has been used to overcome the challenge by
using real-world terrain as the basis for synthesis. This produces good local behaviour
but can have poor global behaviour. We introduce fluid-flow solutions that can be over-
laid on multi-resolution example-based terrain synthesis to improve global realism. We
apply these to an existing pixel-based terrain synthesis method and to a novel terrain
synthesis method, terrain optimisation, based on texture optimisation. Our fluid-flow
solutions improve results for artificial terrains.

1. Introduction

The creation of realistic artificial terrain has been a challenge
for computer graphics for decades. Real terrain is generated by
a range of complex physical processes over millions of years
and it is a substantial challenge to reproduce plausible virtual
terrain. Realism refers to the terrain’s adherence to the physical
rules of the world and it is an important aspect of terrain syn-
thesis. We are particularly interested in generating terrain that
could be judged to have been formed by real-world processes.

We concentrate on example-based terrain synthesis, where
the generated terrain is drawn from real-world examples. Us-
ing real-world data tends to give good local behaviour, because
the local features are true terrain. However, it gives poor global
behaviour, because the methods stitch together pieces of terrain
from different parts of the exemplar. To improve the overall
realism, we add a global process, “pit removal”, that is well-
understood as a pre-process for Geographic Information Sys-
tems (GIS) algorithms. We demonstrate that pit removal is not
appropriate as a post-process for terrain generation and that it
must instead be applied at every level in a multi-resolution ter-
rain generation process. Our results show that pit removal im-
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proves results significantly when the guiding input does not ex-
plicitly address drainage patterns.

As part of this work, we also investigated a range of ways to
adapt the method of texture optimisation to terrain generation.
We report the best of our investigations here (the less success-
ful methods are described in Scott’s thesis [1]). The best algo-
rithm, which incorporates pit removal, produces results that are
different in character to other example-based approaches. Our
experimental participants judged it better than other methods in
certain cases.

We make the following contributions:

1. a novel example-based multi-resolution terrain synthesis
algorithm, terrain optimisation, based on texture optimi-
sation (Section 4);

2. application of three pit-removal algorithms (Section 3) to
two example-based terrain multi-resolution generation al-
gorithms: our novel terrain optimisation algorithm (Sec-
tion 4.4) and Gain et al.’s [2] pixel-based algorithm (Sec-
tion 5);

In addition, we summarise relevant prior work (Section 2),
present example output, and summarise the results (Section 6)
of a comparative study, that is reported fully elsewhere [1, 3],
comparing two state-of-the-art example based methods against
our two algorithms that incorporate pit-removal.
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2. Related work

There are three broad categories of terrain synthesis algo-
rithms: procedural modelling, physically-based simulation,
and example-based methods. These are covered in detail in
Galin et al’s 2019 review [4] and Scott’s thesis [1].

2.1. Procedural terrain synthesis

Research in terrain synthesis initially focused on developing
procedural algorithms that approximate the shape of terrain, in-
spired by Mandelbrot’s early research that models natural phe-
nomena using fractals [5, 6, 7]. Other procedural approaches
followed, including the use of alternative fractal generation
techniques [8, 9, 10, 11], distance-based functions [12, 13, 14],
and sketching methods [15, 16, 17, 18]. These algorithms were
designed to be fast and were especially popular due to the lack
of computing power at the time. While the later procedural
methods allowed a greater degree of control, overall the terrain
produced is not realistic as there is little to no consideration
of the natural phenomena that shape terrain in the real world.
Sketching approaches, in particular, are so unconstrained that
they rely almost entirely on the user’s knowledge of physical
geography to synthesise any kind of realistic structure.

2.2. Physically-based simulation for terrain synthesis

A second approach is physically-based simulation, using
models derived from physical geography [19, 20, 21]. Some
methods in this category synthesise terrain by running simula-
tions at interactive rates [22, 23, 24, 25], and others through
the use of high level evaluations [26, 27]. While these meth-
ods produced more realistic terrain than the procedural meth-
ods, the use of simplified models limits the realism of the ter-
rain that they can produce. For instance, most approaches rely
on models of hydraulic and thermal (diffusive) erosion, ignor-
ing other influential forces that shape terrain including glaciers,
earthquakes, weather patterns, and animal and human interfer-
ence. Control is also an issue, as the user can often change
only the parameters of the models and cannot directly specify
the shape of desired terrain. As a result only a limited range
of types of terrain can be synthesised and the outputs are often
unrealistic and hard to control.

2.3. Example-based terrain synthesis

The third approach is example-based, in which terrain is syn-
thesised from existing data. These methods were developed as
more real-world elevation data became available [28]. The ex-
pectation is that the use of real-world examples will lead to out-
put that is as realistic as the examples. The availability of data
is growing constantly. For instance, 1-arc second digital eleva-
tion data is readily available for the majority of the Earth’s sur-
face [29] with some areas scanned up to 1 meter resolution [30].

Most example-based methods use techniques from texture
synthesis algorithms [2, 31, 32, 33, 34, 35, 36] while others
use artificial intelligence techniques [37, 38]. However, while
the local topography is realistic, owing to the real-world data
provided, the global structure is less realistic than in physically-
based simulation methods because there is no consideration of

natural processes. Our work is inspired by the challenge that
these methods generally produce numerous ‘pits’ (areas with
no outflow to external bodies of water) in a single synthesis,
with those pits being of various sizes, whereas it is rare to have
even a single substantial pit in a section of real-world terrain.

Our work focuses on whether we can increase the level of
realism in example-based approaches in two ways: (1) by in-
vestigating a novel example-based approach, terrain optimisa-
tion (Section 4) and (2) by adding a simulation-based global fix
(Section 3) to example-based results (Sections 4.4 and 5).

Galin et al. [4] and Scott [1] discuss the full range of
example-based terrain synthesis methods. The three state-of-
the-art example-based terrain synthesis methods are those of
Zhou et al. [32], Tasse et al. [33], and Gain et al. [2]. All build
on texture synthesis. Wei et al. [39] classify texture synthe-
sis into three main approaches: patch-based, pixel-based, and
texture optimisation. The following summarises the three ap-
proaches and how they are applied to terrain synthesis; more
detail is provided by Scott [1].

2.3.1. Patch-based terrain synthesis
Patch-based texture synthesis [40, 41, 42] creates a new tex-

ture by incrementally adding patches from the example and
blending or carving the overlapping regions to fit it into the syn-
thesis. Brosz et al. [31] used example height map data to syn-
thesize fine detail for patch-based terrain synthesis. The user
provides an example height map with fine detail features and
a coarse height map with no fine detail as the target. Small
scale features are extracted from the example data by match-
ing patches from the target height map to the example height
map and taking the relative difference in elevation as the fine
detail. This detail is then transferred to the target height map
using Efros and Leung’s image quilting [40]. Zhou et al. [32]
extended this idea, using an improved method of image quilt-
ing by Wu and Yu [42]. The user supplies example data and
a rough sketch of the ridges and valleys as the target output.
Patches are extracted from the example height map along the
ridges and valleys and stitched together using Poisson image
stitching [43] against the corresponding ridges and valleys in
the target. Patches are then placed to fill out the rest of the im-
age in a raster scan order until there are no pixels unfilled. This
work was further extended by Tasse et al. [33], who provided a
more efficient algorithm for ridge identification, an alternative
patch stitching method using Shepard interpolation [44] and
a GPU implementation for finding the best candidate patches.
Their algorithm ran much faster and produced fewer artifacts
between stitched patches [1]. We use Tasse et al. as one of our
comparators (Section 6).

2.3.2. Pixel-based terrain synthesis
Pixel-based texture synthesis creates a texture pixel by pixel

[45, 46, 47, 48, 49]. A value for a synthesised pixel is selected
from the example texture that minimises the difference between
its neighbourhood in the example texture and the neighbour-
hood in the current synthesis. Pixel-based methods use Markov
random field (MRF) theory which models the texture as a real-
isation of a local and stationary process.
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Dachsbacher’s pixel-based terrain synthesis [50] uses non-
parametric sampling, which is adapted from Efros and Leung’s
pixel-based texture synthesis [45]. For a given input that is par-
tially filled with data, the algorithm grows outward from the
set data, pixel-by-pixel. A more successful adaptation, of pixel-
based texture synthesis methods to terrain, was made by Gain et
al. [2], which is based primarily on the pixel-based methods of
Lefebvre and Hoppe [51] and Han et al. [49]. The user defines
point, curve, type, and copy-paste constraints that control the
height and shape of the terrain in certain areas and the method
performs a parallel hierarchical texture synthesis with example
height map data to produce the final result. Implementation on
the GPU gives generation times below 100 milliseconds, allow-
ing interactive editing. We build on Gain et al’s method in our
work (Section 5).

2.3.3. Texture optimisation for terrain synthesis
Texture-optimisation [52, 53, 54, 55] is a technique for tex-

ture manipulation whose applications include synthesis, reshuf-
fling, hole-filling and interpolation. The process of synthesis is
formulated as a minimisation of an MRF-based similarity met-
ric. This is performed using an expectation maximisation (EM)-
like algorithm where the algorithm iterates between finding a
correspondence between the synthesis and the example-texture
(maximisation M-step) and optimising the synthesis using the
correspondence (expectation E-step). No previous terrain syn-
thesis methods have built on the texture optimisation approach
and we tackle this here, creating a new method that we call ter-
rain optimisation (Section 4).

3. Pit removal

The primary downside to current example-based methods
that are based on texture synthesis is the lack of considera-
tion for the global structure of the synthesised terrain. These
methods rely on the user providing the appropriate constraints
to ensure that the structure of the terrain is realistic, and make
no effort to ensure that non-expert users can synthesise realistic
terrain.

The surface flow of water plays a large role in shaping the to-
pography of landscapes. Areas of terrain where the surface flow
of water does not drain into an external water body are gener-
ally known as depressions [56]. For our purposes these fall into
two groups: large-scale endorheic basins [57] and small-scale
pits [58]. Endorheic basins are caused by tectonic depression
and evaporation occurring more rapidly than sedimentation, on
a geological timescale. An endorheic basin usually has a land-
locked lake at its heart. Pits are smaller-scale features that have
no outlet and no water body at their lowest point. They rarely
appear naturally owing to hydraulic erosion and gravity-driven
sediment transport, where the matter is eroded and transported
down-slope until it reaches a sink (e.g., the ocean or a land-
locked lake). This natural process fills in existing basins and
prevents new basins from being created, as matter would have
to be transported up-slope against gravity. There are occasional
cases where pits occur naturally owing to underground trans-
port networks or where recently created pits such as sinkholes

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 1: Examples of pit removal. (a) A terrain height map synthesised using
Perlin noise. (b–d) Output from the three algorithms: (b) depression filling,
(c) depression breaching, (d) hybrid; (e–g) difference between the source and
the output above, where the yellow–red scale shows the increase in elevation
from minimal to substantial, the green–blue scale shows the decrease in eleva-
tion from minimal to substantial. Note: decreases in elevation are paths that are
a single pixel wide; zoom in to view details.

and craters have not yet been filled through the erosion process.
It is also the case that flat landscapes (such as the Laurentian
shield in the northern US and eastern Canada) can have sub-
stantial areas that are endorheic without necessarily having a
clear body of water at their heart [59]. From these observations
of the natural world we make the reasonable assumption that,
when synthesising terrain that is other than flat, the synthesised
terrain will appear more realistic if it has fewer pits rather than
more pits, and that an algorithm could produce more realistic
terrain if it minimised the number of pits it produced in its syn-
thesised output.

Pit-removal algorithms are used in Geographic Information
Systems (GIS) for processing elevation data to ensure that there
is always a down-sloping path from any point to a sink. A ter-
rain height map T has no pits if, for every pixel p0 ∈ T , there ex-
ists a connected path of adjacent pixels (p0, ..., pn) where pn ∈ S
for a set of sink pixels S , and T (pi) > T (pi+1). The sink set S
is typically the set of pixels on the border of the height map
but can also include internal bodies of water such as landlocked
lakes or sinkholes that the user wishes to have in the output ter-
rain.

From a GIS perspective, while pits could be the result of nat-
ural terrain features (e.g., sinkholes), they are generally consid-
ered to be erroneous data [60] likely to be caused by unnatural
terrain features (e.g., bridges, embankments, dams) or artificial
data (e.g., random noise, data collection artefacts). The reason
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for applying pit-removal as a pre-process is that certain GIS al-
gorithms fail in the presence of pits in the input data. The algo-
rithms are thus not designed to produce realistic results, rather
they are designed to remove pits with as few changes as pos-
sible. Careful consideration needs to be taken to ensure that,
when adapting these methods to remove pits for terrain syn-
thesis methods, in an attempt to increase realism, the overall
realism is not reduced due to unintentional features, including
flat-planes (Figure 1b,e) or deep and thin valleys (Figure 1c,f).

We investigate three pit-removal algorithms from GIS [58,
61, 62] and experiment with ways in which they can be incor-
porated into multi-resolution example-based terrain synthesis,
both into the existing pixel-based synthesis algorithms of Gain
et al. [2] (Section 5) and into our own novel terrain optimisation
method (Section 4 and 4.4).

The three main approaches for pit removal are depression fill-
ing, depression breaching, and hybrid methods.

3.1. Depression filling

Depression-filling algorithms remove pits by increasing the
elevations inside the pit region to ensure that all elevations
have a down-slope to a sink. We implemented the “Improved
Priority-Flood” algorithm [58], which performs depression fill-
ing taking into account flow along flat areas. An example of the
algorithm’s output can be seen in Figure 1b.

Depression filling processes each point of elevation only
once, which makes it ideal for large height maps used in GIS. It
works well for pits with a small area (as in real-world datasets)
and regions that are completely flat that need a flow direction,
as there is only a small change in elevation values and the ef-
fects are barely noticeable. However it does not work well for
pits with a large area as the result is an undesirable flat plane
that spans the area of the pit (Figure 1b,e). Filling is still used
in GIS, despite evidence that breaching and hybrid methods are
more aligned with the causes of depression artefacts in captured
data and affect the overall height map to a lesser extent [62, p.3].

3.2. Depression breaching

Depression breaching (also known as carving) algorithms de-
crease the elevations around pit regions to ensure that all eleva-
tions have a down-slope to a sink. We implemented Soille’s
algorithm [61], which determines the path of the channel by the
flood order of the height map. An example is shown in Fig-
ure 1c.

Our results (see later) shows that depression breaching is the
most successful of the three approaches, so we summarise our
algorithm here (the details of the depression-filling and hybrid
algorithms can be found in Scott’s thesis [1]).

The breach-algorithm takes, as input, a height map and set of
pixels S as the sinks. The breach-algorithm uses an open queue
(a priority queue with ascending order of elevation), a closed
set (a plain set), and a flow map F (a map from pixel to pixel).
The open queue acts as a list of pixels that still needs to be pro-
cessed in an ascending order of elevation, which simulates the
flooding process from the specified sinks. The closed set keeps
track of pixels to ensure that they are not processed more than

once. The flow map is a map of neighbouring pixels that repre-
sents the direction that a pixel should flow downhill. It is used
to produce a path from any pixel to a point of lower elevation,
or a sink pixel. First, the open queue and the closed set are
initialized with the sink pixels. Next, the fill-algorithm polls a
pixel p from the open queue and iterates over each neighbour-
ing pixel pn. If the neighbour pixel pn is already in the closed
set it is ignored, otherwise it is added to the open queue, closed
set, and flow map (F(pn) = p). If the neighbour pixel pn has a
lower elevation than the pixel p (T (pn) < T (p)), the process of
breaching occurs. Starting with the pixel p0 = p, the breach-
algorithm creates a path P = (p0, ..., pk), where each sequen-
tial pixel in the path is found using the flow map pi+1 = F(pi)
and this continues until an elevation lower than T (pn), meaning
T (pi ∈ P) ≥ T (pn), or a sink pixel is reached, meaning pk ∈ S .
The elevation of each pixel in this path pi ∈ P is then lowered
to the next representable value below the neighbour pixel T (pn)
and the previous pixel in the path T (pi−1). This process is re-
peated until the open queue is empty.

In GIS, breaching is generally regarded as better than fill-
ing [62, p.3] but is slightly less efficient owing to backtracking
when carving channels (that is, a small proportion of pixels are
visited more than once, owing to backtracking, as illustrated
by the non-white pixels in Figure 1f). Breaching algorithms
are well suited for shallow pits that cover a large area, as the
breaching channel alters a minimal number of pixels to remove
the pit. However deep pits cause drastic modification to ele-
vation levels when breaching, so that the resulting channel in-
cises the surrounding terrain deeply (indicated by the dark blue
in Figure 1f). These deep pixel-wide channels are undesirable
in many cases, especially when the channels are carved from
pits created by noisy data, producing an appearance of a river
network where there is none. There are other approaches to
breaching, such as the least-cost-path method by Lindsay and
Dhun [63], but they are developed for more specific reasons,
like breaching on fine-resolution height maps of heavily altered
landscapes, and are unsuitable for the general case of terrain
synthesis.

3.3. Hybrid method
Hybrid methods combine the techniques of filling and

breaching to remove pits with the intention of minimizing the
downsides of each. We implemented the selective breaching
mode for the hybrid approach by Lindsay [62], which breaches
channels if the cost is lower than the user-defined thresholds
and fills the rest of the pits. An example is shown in Figure 1d.

In general, hybrid methods reduce the area affected by de-
pression filling, causing smaller flat regions, and incise less
deeply (compare Figures 1e and 1g). However, it is necessary
to tune two additional parameters, the maximum channel depth
and the maximum channel length, to achieve the best results
for the pit-removal for a given terrain. This parameter tuning
requires an understanding of the trade-offs involved for each
individual case.

3.4. Summary
All three algorithms are geared towards removing pits for

GIS applications, such as surface flow simulations. As is clear
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(a) (b)

Fig. 2: An example of the terrain optimisation algorithm. (a) Perlin noise used
as the initial guide terrain G. (b) Terrain synthesised using the core terrain
optimisation algorithm.

from the large flat areas and deep pixel-wide chasms in Fig-
ure 1, they are not designed to make the terrain more realis-
tic nor are they particularly suitable for terrain that contains
substantial large pits. They are therefore not suitable as a
stand-alone post-process for example-based terrain generation.
However, we demonstrate below that they can solve the chal-
lenge of pits in terrain synthesis if adapted to a multi-resolution
example-based approach, where the pit removal is applied at
each resolution during generation. We apply these algorithms
and ideas to our novel example-based multi-resolution terrain
optimisation method (Section 4.4) and then to Gain et al’s pixel-
based method (Section 5).

4. A terrain optimisation algorithm

Texture optimisation has not previously been considered for
terrain generation. Our novel terrain optimisation algorithm
follows the texture optimisation approach of Kwatra et al. [53],
updated to incorporate Generalised PatchMatch [64], with other
minor modifications as noted below, and with pit removal
added.

4.1. Core terrain optimisation algorithm

The user provides, as input, a source terrain height map
(source map) and an initial estimation of elevations for the de-
sired height map (guide map). The source map, S , provides the
real terrain features that will be used to synthesise a new terrain
height map, and the guide map, G, is used to guide the algo-
rithm to produce terrain in line with artistic direction. The final
synthesised terrain, R, is a reconstruction of patches extracted
from the source map, S . Figure 2 shows an example of the core
algorithm, taking Perlin noise as its guide map, G, and convert-
ing this to a more realistic terrain, R. Our algorithm closely
follows Kwatra et al. [53]; we summarise it here.

First, the algorithm creates a Gaussian image pyramid of
depth L, for both the source map, S k, and the guide map Gk, and
a correspondence map, Ck, for each pyramid level k that maps
the patches of the current synthesis Rk to patches in source map
S k. The highest resolution image in the Gaussian pyramid is at
level k = 0 and the lowest at level k = L. The lowest resolution
level in the Gaussian pyramid for the guide map GL is used as

the initialisation for the synthesis RL. The correspondence map
Ck maps patches rp (of size N×N) centred on every pixel p ∈ Rk

to a patch sp in the corresponding source map S k. The values
stored in this map are transforms, where the correspondence
map contains a mapping between the centre pixel p of rp and
the coordinate

[
x, y

]
of the centre of sp, such that Ck(p) =

[
x, y

]
.

The values in the correspondence map are initialised by finding
the best patches in S L that match the current synthesis PL, in
the same way as the M-step described below.

Second, after initialisation, starting at the lowest level, k = L,
of the Gaussian pyramids, the algorithm begins the process of
optimisation and up-sampling. Optimisation is an iterative pro-
cess, minimising the energy function of the synthesis Rk (with
respect to S k) and uses an EM-like approach. The energy of a
synthesised terrain is the sum of the SSD between each patch
rp in the synthesis Rk and its closest patch sp in the source map
S k

Et(Rk) =
∑
p∈Rk

∥∥∥rp − sp

∥∥∥2
. (1)

The E-step calculates the new values of the synthesis RL from
the patches in the current correspondence map Ck, reconstruct-
ing the synthesis with patches from the source map. The new
value for every pixel in the synthesis is the mean of values from
the overlapping patches sp

Rk(p) =
∑
q∈Q

sp+q(nb − q)
N2 , (2)

for each pixel p ∈ Pk, where Q = [na, ..., nb]2 are the coordinate
offsets for each patch, N is the square patch size, and na =

⌊
−N
2

⌋
and nb =

⌊
N−1

2

⌋
are the patch offsets on opposite sides of the

patch centre.
The M-step finds new patches sp ∈ S k that best match each

patch rp in the current synthesis, that minimise the texture en-
ergy function. Rather than the tree-based method used by Kwa-
tra et al., we use the PatchMatch algorithm [54], which more
efficiently finds a corresponding patch that approximately min-
imises the energy function. The correspondence map is updated
with the new mapping of rp to its closest match sp found using
PatchMatch, such that

Ck(p) = arg min
sp

(∥∥∥rp − sp

∥∥∥) . (3)

This EM-like optimisation process is computed µ times (we use
µ = 2, as greater values of µ provide diminishing returns) be-
fore the correspondence map Ck is up-sampled to the next level
Ck−1. The values in the up-sampled correspondence map are
computed as

Ck−1 (p) = 2Ck
(⌊ p

2

⌋)
+

(
p − 2

⌊ p
2

⌋)
. (4)

After the correspondence map has been up-sampled, the op-
timization and up-sampling process repeats on level k − 1. The
optimization and up-sampling is repeated until the optimization
at k = 0 is complete, and the final output is the reconstructed
synthesized terrain P0.



6 Preprint Submitted for review / Computers & Graphics (2021)

(a) (b)

(c) (d)

Fig. 3: This highly artificial constraint clearly demonstrates the effects of dif-
ferent soft weight functions w. (a) No weights, w = 0 (no soft constraints,
initialisation only). (b) Exponential weighting, w = α 2k−1

2L−1
. (c) Linear weight-

ing, w = α k
L . (d) Constant weighting w = α. We use exponential weighting (b).

4.2. Constraints

Kwatra et al’s texture optimisation algorithm has three types
of constraints that can be used for artistic direction: soft, hard,
and type. We use soft constraints. Hard and type constraints are
discussed by Scott [1].

Our soft constraints are similar to those proposed by Kwatra
et al. [53]. They guide the optimisation process to synthesise
values closer to, but not exactly the same as, the constrained
values.

To use soft constraints, the guide map provided by the user
becomes the soft-constraint guide for each pixel. More specif-
ically, the guide map Gk is used as the soft-constraint for the
synthesis Rk at each pyramid level k. We found it sufficient
to implement soft-constraints by combining the constrained
pixel values in the soft constraints with the reconstruction in
a weighted sum, replacing Equation (2) such that

Rk(p) = wGk(p) + (1 − w)
∑
q∈Q

sp+q(nb − q)
N2 , (5)

where w = α 2k−1
2L−1 . The α term controls the maximum blending

weight at the lowest resolution in the pyramid, level L.
This weighting term w ensures that the effect of the soft con-

straints is halved at each successive level of the synthesis. At
low resolutions (where k is larger) the soft constraints drive the
general shape of the terrain, ensuring that large scale structures
are consistent with the artistic direction. At high resolutions
(where k is smaller), the large scale structures are inherited from
the lower resolutions and the terrain details are almost entirely

driven by reconstructing patches from the source map, ensur-
ing a greater degree of realism while being consistent with the
general layout of the artistic direction.

We experimented with different weighting functions (Figure
3). Constant weighting w = α, and linear weighting w = α k

L
influence the synthesis too much at higher resolutions and re-
duce overall realism. Zero weighting only influences the lowest
level initialisation, so the final result is dominated by the terrain
structure from the source map. Exponential weighting gives a
good balance between the constraint and the structure from the
source map.

Figures 8c,f,i,l and 10a,b,c show further examples of the al-
gorithm’s output with the addition of an expanded search space
(Section 4.3) and pit removal (Section 4.4).

4.3. Expanding the PatchMatch search space
Our core terrain optimisation algorithm uses integer coordi-

nates and a single orientation for the patches in the source map.
This limits the use of the real-world data provided because it
restricts the algorithm to only translations when more realistic
sections may exist in the source map but the algorithm cannot
transform them appropriately to be used in the synthesis. For
example, rotation of a section of the source may produce better
alignment than any translation or modifying the overall height
of a section of the source may produce an improved result [65].
This limitation can be overcome by extending the correspon-
dence search to use the Generalised PatchMatch algorithm [64].

The question is: which transformations are appropriate in
the context of terrain? For example, Generalised PatchMatch
searches over a range of rotations θ and scales s, extending the
search space of the original PatchMatch algorithm from (x, y) to
(x, y, θ, s). However, scaling is not appropriate for transferring
terrain features, as it undermines the physical attributes of ter-
rain and thus the realism. However, the same principles can be
used to search for reflection transformations. We further experi-
mented with extending the algorithm to calculate a height-offset
that minimises the SSD for a possible candidate, which is stored
as part of the final transform. This is similar to the gain and bias
adjustments used in Image Melding texture synthesis [55]. Our
final implementation is a PatchMatch algorithm that includes a
search space (x, y, θ, r, h), of translation (x, y), rotation θ, reflec-
tion r, and height-offset h.

Our experiments [1] demonstrated that the continuous trans-
lation extension slightly reduces the mean energy while giv-
ing a visually similar result. Rotation and reflection have the
challenge that, while dramatically increasing the search space,
they can cause loss of any alignment of the features in the ex-
ample map. For example, some terrains have strongly direc-
tional features, such as parallel valleys, and it may or may not
be appropriate to rotate such features depending on the desired
form of the output. The user needs to make an artistic judge-
ment whether or not this is desirable and hence whether to em-
ploy these two extensions. Our experiments [1] show that our
height-offset extension should not be used. Although this low-
ers the mean energy function, it cannot guarantee that the re-
sulting synthesis is realistic with respect to the example map
because there are features of terrain that cannot be raised or
lowered significantly without losing their realism.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Comparison between the core terrain optimisation algorithm and the results of pit-removal extension, using the three different pit-removal algorithms. Top
row: a pseudo-realistic terrain driven by Perlin noise. Bottom row: a highly artificial terrain driven by a lambda in a circle. (a),(e) The core terrain optimisation
algorithm. (b),(f) Depression filling. (c),(g) Depression breaching. (d),(h) Hybrid algorithm.

4.4. Pit removal applied to terrain optimisation

Similar to other example-based texture-synthesis methods,
our new terrain optimisation algorithm requires user guidance
to ensure that a realistic structure is synthesised. As such, the
core algorithm produces terrain that contains many unwanted
pits, reducing the overall realism of the result. We applied the
three pit-removal algorithms to the core terrain optimisation al-
gorithm to ascertain which would be most suitable.

The core terrain optimisation algorithm is modified as fol-
lows. During the optimisation process, after the E-step when
the synthesis is reconstructed, a pit-removal algorithm is used
to ensure there are no pits. This process is repeated for every
iteration of optimisation except at the highest level of synthe-
sis k = 0, to ensure that no pixel-wide artefacts from the pit-
removal are created after the last iteration of the optimisation.

Examples of the pit-removal application are shown in Fig-
ure 4. Depression filling produces unrealistic flat regions. This
is obvious in the highly artificial lambda example (4f), where
the entire central region becomes a high plateau, but it is also
clearly visible in the more realistic example (4b), where it cre-
ates a number of unrealistic flat plains. Depression breaching
produces V-shaped valleys owing to the use of the pixel-wide al-
gorithm at every level of the multi-resolution generation. There
is little to choose between depression breaching and the hybrid
method in the more realistic case (4c,d), but in the highly ar-
tificial case we see that the hybrid method (4h) produces less
convincing results than the breaching method (4g) owing to the
increase in undesirable flat regions. On this evidence, we there-
fore choose to apply depression breaching when testing our ter-
rain optimisation approach against other example-based meth-

ods (Section 6).

5. Pit removal applied to pixel-based synthesis

To provide a suitable comparator for our novel terrain opti-
misation algorithm, we want an existing example-based terrain
synthesis algorithm that incorporates pit removal. To this end,
we adapted the state-of-the-art pixel-based terrain generation of
Gain et al. [2] to incorporate pit removal. We investigated sev-
eral ways to apply pit removal to their algorithm and show the
most successful approach here. Other approaches are discussed
by Scott [1].

We developed our “Gain-pit” algorithm by adding height-
offset modification to Gain et al’s algorithm [2]. Gain et al. use
an offset map to drive multi-resolution synthesis. We adapted
this algorithm so that, during the correction phase of the algo-
rithm, at each pyramid level, an extra step is taken to remove
pits for the current synthesised terrain. After each iteration of
correction, where candidates are selected to replace values in
the synthesis and offset map, the terrain is reconstructed using
the coordinates in the synthesis to sample the elevations from
the example map and adding the height offsets from the offset
map. We then apply one of the pit-removal algorithms (Section
3) to remove the pits from the reconstruction R to produce a
new pit-free height map R′. The difference between the recon-
struction and the pit-free height map, R′ − R, is added to the
current offset map. This ensures that, if Gain-pit reconstructs
the synthesis using the modified offset map, it will result in the
same pit-free height map R′.
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(a) (b)

(c) (d)

Fig. 5: A comparison between the original Gain algorithm and the results of
the Gain-pit algorithm using the three different pit-removal algorithms on a
highly artificial construct. (a) The original Gain algorithm. (b) Gain-pit using
depression filling. (c) Gain-pit using depression breaching. (d) Gain-pit using
the hybrid algorithm.

We ran the algorithm on several terrains with all three pit-
removal algorithms. The highly artificial terrain in Figure 5 is
chosen from our examples because it most clearly shows the
differences. Depression filling is inappropriate because it de-
stroys the desired features and creates an unnatural flat plane.
Breaching is clearly superior to filling. Hybrid is similar to
breaching but suffers from flat-plane artefacts.

Pit-removal is run many times during the synthesis because
the correction process introduces new pits in each iteration.
This compounds any flat regions produced by depression filling
or the hybrid algorithm, and it produces an overall rise in the
centre of the terrain relative to the sides. Because the correction
and de-pitting are executed at all resolutions, small flat regions,
created by filling the pits at low resolution, are enlarged dur-
ing up-sampling. While flat regions may be adjusted through
the correction process, our experiments found that the correc-
tion process is insufficient to prevent the generation of terrain
that does not exist in the example. We therefore chose to use
depression breaching, rather than the hybrid approach, as our
method of choice in “Gain-pit”.

6. Results

We have created two novel methods that include pit removal
through depression breaching in a multi-resolution algorithm.
These are our novel terrain optimisation method (Section 4) and
our modification of Gain’s algorithm to create our “Gain-pit”
algorithm (Section 5).

(a) Gain (b) Gain-pit

Fig. 6: A comparison between the original Gain algorithm and the results of
the Gain-pit on an artificial terrain. Notice the improved flow on the two main
valleys that disgorge on the left edge of the terrain

(a) (b) (c)

Fig. 7: A comparison between the original Gain algorithm and the results of the
Gain-pit for constraints that imitate real terrain. (a) The original Gain algorithm
(b) Gain-pit using the breach-algorithm. (c) Difference between the two images,
where the yellow-red scale and green-blue shows the increase and decrease in
elevation respectively, from minimal to substantial.

6.1. Implementation details

For terrain optimisation, our un-optimised CPU implementa-
tion, written in C++, takes approximately five minutes to syn-
thesise a 1000 × 1000 pixel terrain on a machine with an Intel
Core i5 3570K (3.4GHz) and 8GB of DDR3 1600MHz mem-
ory. In this implementation the largest performance bottleneck
is the PatchMatch algorithm which takes approximately 95% of
the total synthesis time. While not an issue for our experimen-
tal work, in a commercial environment this can be addressed by
optimising PatchMatch with a parallel implementation on CPU
or GPU [66, 67].

Our implementation of Gain’s algorithm, in C++, runs in ap-
proximately two minutes on the same machine. The addition of
pit removal to create the Gain-pit algorithm does not change the
run time significantly. That is, the pit-removal algorithm adds
less than a second of compute time for a 1000 × 1000 terrain.
Pit removal takes similar time (i.e., less than a second) in the
terrain optimisation algorithm.

Although the pit removal adds no significant extra cost to
run time, since completing our experiments new algorithms for
removing depressions have been published that would bear in-
vestigation, as they purport to be more efficient [56, 68].
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6.2. Artefacts of depression breaching

For both terrain optimisation and Gain-pit, we choose to use
depression breaching as the best of the three pit-removal meth-
ods. In Section 3 we observed that depression breaching pro-
duces unrealistic single-pixel wide valleys in its single-pass im-
plementation (Figure 1c,f). The multi-resolution nature of both
terrain optimisation and Gain-pit convert this behaviour into
steep-sided V-shaped valleys (Figures 4c,g, 5c, 6b). The single-
pixel wide carving can still cause unrealistic results in the final
layer of synthesis, which we address by not performing the pit-
removal in the final layer.

6.3. Gain-pit vs Gain

Compared to the original Gain algorithm, Gain-pit ensures
that there are no pits and produced significantly different re-
sults in cases where the constraints would otherwise produce
substantial pits (e.g., Figures 5 and 6). Consider, however, pit-
removal when the constraints are designed so that a “natural”
terrain would result (e.g., Figure 7). In these cases, Gain-pit
has a small effect on the generated terrain. There is only a
slight difference in elevations between the two synthesised ter-
rain images: only a few regions have needed to be lowered sig-
nificantly due to the addition of breaching. Our experimental
assessment (Section 6.5) bears out this informal observation:
when constraints are defined that consider drainage patterns, the
pit-removal offers limited improvement because the user has ex-
plicitly allowed for drainage in their constraints; the benefit of
pit-removal comes when the user has not considered drainage
in their input constraints.

6.4. Example output

Example outputs of both methods are shown in Figure 8.
Three of these examples are generated by giving a real-world
exemplar and asking the algorithm to generate a similar ter-
rain, using a different nearby piece of real terrain as the source
material [1]. The fourth example is generated using the same
highly-artificial construct as used by Zhou et al. [32]. Three fur-
ther examples of the terrain optimisation algorithm are shown
in Figure 10.

To generate these examples, each algorithm needs appropri-
ate input constraints. For the constraints of our terrain optimi-
sation method, we down-sampled the real-world target terrain
by a factor of sixteen to a resolution of 62 × 62 pixels, we then
up-sampled this to 1000 × 1000 pixels, to use as the input for
soft-constraints. This emulates the rough input an artist would
use to guide the algorithm to produce the correct shape of ter-
rain, without specifying specific details. For the constraints of
Gain-pit, we created a program to aid in the specification of the
constraints. We traced the ridge-lines and other prominent fea-
tures of the target terrain, and the program created curve con-
straints using the traced paths, extracting the correct elevation
and gradient values. We manually corrected the area-of-effect
for the constraints and other small aspects of the constraints.
The final result was a set of curve constraints that matched the
target terrain.

Both methods produce feasible terrain in all examples that
we have tried. However, two of the examples shown here

demonstrate the type of minor undesirable characteristics that
can be produced by the two algorithms, which detract from their
believability: overly smooth terrain from Gain-pit in Figure 8h
and repetitive structures from terrain optimisation in Figure 8l.

6.5. Experimental evaluation
We conducted a substantial experimental evaluation to eval-

uate the relative realism of our methods on these and other ex-
amples. The full details of the experiment are reported else-
where [3, 1]. Subjects were asked to judge how believable each
terrain is relative to other methods generating the same terrain
and relative to the real-world terrain in cases where there was
a real-world equivalent. The intention here is to use subjective
believability as a proxy for objective realism. We summarise
the relevant results here.

A total of 245 subjects (of whom 124 identified themselves
as experts in physical geography) completed an online survey
containing pair-wise comparisons of seven sets of terrain im-
ages. Each set contained one terrain height map synthesised by
the following methods: Tasse et al. [33]; Gain et al. [2]; “Gain-
pit” (Section 5); and terrain optimisation (Section 4.4). In five
of the sets, each method was used to reproduce a real-world
terrain example and a similar real-world example was included
in the pair-wise comparisons (making a total of 10 pair-wise
comparisons for each set). For a sixth set, the algorithms were
used to reproduce a highly artificial structure in the shape of
a lambda surrounded by a ring of mountains. For a seventh
set, the algorithms were unconstrained. Note that the five real-
world examples (Sets 1–5) are all of terrain where fluvial ero-
sion would be expected to be the main cause of shaping the
landscape. Set 3 (Figure 8g–i) and Set 5 (Figure 10(b)) do both
have regions that are almost flat but, even here, the expectation
is of a smooth shallow slope shaped by erosion and deposition.
The guide map for Set 6 (Figure 8j–l) has large flat areas but the
source terrain gives the algorithms no source data that is flat and
so the algorithms have to fill in this material as best they can,
the user’s intention being that the algorithm should produce a
high circular mountain range surrounded by lower hill country.

Subjects were presented with pairs of terrain images from
each set (a total of 62 pair-wise comparisons) in a random or-
der and ask to select the terrain that was “more realistic.” On
the recommendation of our statistical consultant, the Bradley-
Terry model [69] with Holm-Bonferonni correction was used to
analyse the data.

The results are summarised in Figure 9 and are explained in
detail by Scott [3]. Across the seven example terrains used in
the experiment, each of the tested methods generated at least
one example that was indistinguishable from real-world terrain
in terms of believability at the 99% confidence level (e.g., our
new terrain optimisation method (“S”) was the most believable
in sets 3 and 7). Each method also generated at least one exam-
ple that was clearly considered to be less realistic than the other
methods (e.g, our new method was the least believable in sets 1,
4 and 6).

Looking at the specific examples in Figure 8, the experimen-
tal results showed that our new terrain optimisation method was
considered indistinguishable from reality in the case of an ero-
sional and depositional landscape along the edge of a mountain



10 Preprint Submitted for review / Computers & Graphics (2021)

(a) Real world target (b) Gain-pit (c) Terrain optimisation

(d) Real world target (e) Gain-pit (f) Terrain optimisation

(g) Real world target (h) Gain-pit (i) Terrain optimisation

(j) Gain (k) Gain-pit (l) Terrain optimisation

Fig. 8: Four examples of generated terrain from four of the seven sets of im-
ages used in our experiment. The middle column is the Gain-pit algorithm
(Section 5) and the right column is our terrain optimisation algorithm (Sec-
tion 4.4), both with depression breaching. The left column is the real-world
target for the top three examples and the output of the Gain algorithm for the
highly artificial construct in the bottom example. All examples are 30×30 km2,
comprising 1000 × 1000 pixels. These images are examples of the stimuli used
in our perceptual experiment [3].

P1 TR SG

P2 TR S G

P3 TR S G

P4 TR SG

P5 TR S G

P1–5 TR SG

P6 T SG

P7 T S G

P1–7 TSG

1.0 0.79 0.63 0.50 0.40 0.32 0.25 0.20 0.16 0.13 0.10

1.0 0.79 0.63 0.50 0.40 0.32 0.25 0.20 0.16 0.13 0.10

1.0 0.79 0.63 0.50 0.40 0.32 0.25 0.20 0.16 0.13 0.10

Fig. 9: A visualisation of the results of the Bradley-Terry analysis for the seven
tested examples and for combinations of sets 1–5 and sets 1–7. For each set, a
letter is placed at the location of the Bradley-Terry parameter, πi. More realistic
results are to the left (higher πi), less realistic results are to the right. Boxes
are put round those letters that are not statistically significantly different at the
99% level. All letters within a box can be considered to be equivalent while all
letters that do not share a box are statistically significantly different from one
another. R=real, T=Tasse, S=terrain optimisation, G=Gain, P=Gain-Pit.

range (set 3, source terrain taken from the Făgăraş Mountains,
Figure 8g–i), while Gain and Gain-pit were considered most
remote from being realistic.

Our terrain optimisation was the method considered closest
to reality in the case of an alpine post-glacial landscape (set 2,
source terrain taken from the Rocky Mountains, Figure 8d–f),
with Gain being statistically equivalent and Gain-pit ranking
only slightly worse.

In the case of an incised plateau with dry riverbeds and a high
drainage density (set 1, source terrain taken from the Yemeni
desert), Gain and Gain-pit were considered indistinguishable
from reality (Figure 8a–c) while our terrain optimisation was
considered the least realistic of the four artificial terrains.

For the highly artificial lambda-in-a-circle (set 6, Figure 8j–
l), Gain-pit was considered the most realistic result, better than
Gain alone, while our terrain optimisation produced what was
considered the least realistic result.

Taken over all seven examples, no one method performed
better overall in terms of realism. However, some methods
clearly have better performance in some circumstances than
others. The wide variation in performance across individual
sets means that the combination of results into a single overall
statistic has limited validity. The subtleties of this are discussed
in detail by Scott [1, 3]. Considering the examples in Figure 8,
all generated examples could be considered feasible, but there
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(a) (b) (c)

Fig. 10: Terrain optimisation examples for the three sets not shown in Figure 8.
(a) Set 4: young stratovolcanoes with source terrain from Central Java, Indone-
sia. (b) Set 5: degraded ancient landscape of inselbergs with source terrain
from Ngarutjaranya, Australia. (c) Set 7: Algorithm allowed to run without
guide map, with source data from fault bounded mountain ranges in Marlbor-
ough, New Zealand.

are clear differences in the appearance of terrain generated by
terrain optimisation compared with that generated by the Gain
algorithms.

From these results, we can conclude that, on average, our
new terrain optimisation can perform as well as existing state-
of-the-art terrain synthesis methods and that, for certain types
of terrain, it can produce superior results. terrain optimisation
therefore provides another tool in the armoury of terrain syn-
thesis and provides terrain that has a different character to other
approaches.

With regard to whether pit-removal improves the results of
the algorithm by Gain et al., the experimental results show that
the addition of pit-removal performs statistically identically to
the unmodified Gain algorithm when replicating real-world ter-
rain in which drainage patterns are present in the guiding input
(sets 1–5), but it outperforms the unmodified algorithm by sta-
tistically significant margins in the artificial cases (sets 6 and 7,
set 7 is shown in Figure 6), where the Gain-pit algorithm im-
proves the drainage pattern of the generated terrain. Therefore,
in situations where the target map has been set up by the user
to incorporate drainage, pit removal is of limited benefit; but
in situations where substantial pits will result, pit removal has
significant benefit in increasing believability in example-based
terrain synthesis.

7. Conclusion

Our terrain optimisation algorithm is a novel approach to ter-
rain synthesis based on the texture optimisation approach of
Kwatra et al. [53]. On average, its output is comparable in real-
ism to the other state-of-the-art example-based terrain synthesis
methods; but it produces terrain that is different in character to
other example-based methods so can provide a useful alterna-
tive.

Multi-resolution pit removal is a novel approach to improv-
ing realism in existing terrain by removing or reducing the pres-
ence of endorheic basins, where depression breaching is the
most appropriate of the various pit-removal algorithms tested.
Were the user does not explicitly avoid endorheic basins in their
artistic direction, our method improves the resulting terrain.
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