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Abstract

Our goal is to find subdivision rules at creases in arbitrary degree subdivision for piece-wise polynomial curves, but without
introducing new control points e.g. by knot insertion. Crease rules are well understood for low degree (cubic and lower) curves.
We compare three main approaches: knot insertion, ghost points, and modifying subdivision rules. While knot insertion and ghost
points work for arbitrary degrees for B-splines, these methods introduce unnecessary (ghost) control points.

The situation is not so simple in modifying subdivision rules. Based on subdivision and subspace selection matrices, a novel
approach to finding boundary and sharp subdivision rules that generalises to any degree is presented. Our approach leads to new
higher-degree polynomial subdivision schemes with crease control without introducing new control points.
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1. Introduction

We wish to have arbitrary-degree subdivision surfaces with
creases and boundary conditions that are as robust as those
available for B-spline surfaces [8]. The existing methods for
degree 3 do not generalise to higher degrees. We have anal-
ysed the problem and provide a general solution, with specific
worked examples for degrees up to 7. We present here our re-
sults for curves, which provide the necessary precursor to the
more challenging surface cases.

Sharp creases and end-point interpolation (including Bézier
end-conditions) in B-spline curves (and by extension in tensor-
product B-spline surfaces) are typically achieved via multiple
knots. Indeed, a knot of multiplicity m reduces the continuity
of a degree d B-spline to Cd−m from the native Cd−1 conti-
nuity at single knots. Thus, to create a crease, a knot of multi-
plicity d can be used. To achieve Bézier end-conditions, knots
of multiplicity d + 1 are included at the start and end of knot
vectors.

Instead of using multiple knots to achieve end-point interpo-
lation, one can use ghost (also known as phantom or virtual)
points. Depending on degree, several ghost points are pre- and
appended to the control polygon. These are carefully placed
(as linear combinations of existing control points) so that the
resulting curve satisfies given end-conditions. This technique
yields modified basis functions formed as linear combinations
of B-splines.

A popular alternative to using basis functions to evaluate
spline curves and surfaces is recursive subdivision [18, 20].
Creases and boundary interpolation rules can still be obtained
via multiple knots [17, 16, 12], but there is an alternative avail-
able: smooth subdivision rules are modified to sharp ones, as
e.g. in [9, 7]. This has the advantage over multiple knots that
the user does not need to interact with the knot vector. The user
marks control vertices of a curve (edges in the surface case) as

smooth (default) or sharp. This leads to an intuitive modelling
interface as no extra control points are introduced, in contrast
to knot insertion.

Motivated by these observations and the fact that sharp rules
have so far been limited to low-degree subdivision [7, 1, 17,
15, 16, 11, 10], we investigate a more general setting for in-
troducing sharp creases and boundary interpolation rules in
higher-degree spline curves. Our results then extend naturally
to tensor-product surfaces and potentially to higher-degree sub-
division surfaces, such as those by [24] and [2].

The problem of finding crease rules, and our approach to
solving it, comprise our main contribution (Section 3). We
present case studies for odd degrees (Section 4) and the more
challenging even degrees (Section 5), demonstrated on exam-
ples of B-spline subdivision curves with creases. We show that
relaxing some of our requirements (Section 6) leads to interest-
ing trade-offs between the simplicity of subdivision rules and
the behaviour of subdivision curves at creases and end-points.
Before all this, we present our notation and a summary of the
necessary underlying B-spline theory.

2. Preliminaries

Consider a polynomial spline curve of degree d and order
k = d + 1 given by the knot vector t = (t0, t1, . . . , tn+d),
ti ≤ ti+1, where i = 0, . . . , n+ d− 1, and by n control points
Pi:

c(t) =

n−1∑
i=0

Bi,k(t)Pi, tk−1 ≤ t ≤ tn. (1)
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The B-splines Bi,k are defined recursively [6]:

Bi,1(t) =

{
1 if ti ≤ t < ti+1,

0 otherwise,

Bi,k =
t− ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t
ti+k − ti+1

Bi+1,k−1(t),

(2)

with the convention 0
0 = 0. It is typically required that ti <

ti+d for all i = 1, . . . , n−1. From this definition it follows that
the support of Bi,k, i.e., the closure of the interval where it is
non-zero, is [ti, ti+k].

While many of the ideas that we explore below can be applied
in the general setting of non-uniform knot vectors, we focus on
initially uniform knot vectors ti = i, but knots are subsequently
allowed to become multiple. An example of uniform B-splines
is shown in Fig. 1a. To achieve Bézier end-conditions, an open-
uniform knot vector (end knots have multiplicity k) can be used;
see Fig. 1b.

2.1. B-spline creases
The typical B-spline approach to creating sharp creases is by

using multiple knots. This follows from the fact that the con-
tinuity of a B-spline of degree d at a knot of multiplicity m is
Cd−m. In the cubic case, a triple knot is used. For an exist-
ing curve, there are two variants. First, one moves two knots
to create three coalescing knots, i.e., a triple knot; see Fig. 1c.
Second, one inserts a desired knot several times until its multi-
plicity reachesm = d; see Fig. 1d. This introduces new control
points that the user can freely move around. While valid and
popular, these solutions are not ideal, especially when gener-
alised to tensor-product surfaces, for the following reasons:

• the user needs to have access to the knot vector and under-
stand how creating and moving multiple knots influences
the shape of a curve or surface;

• in the surface case, one cannot use a (multiple) knot lo-
cally; a knot line must run across the whole surface or form
a closed loop.

Due to the local convex hull property of B-splines, coalescing
control points can be used to force c(t) to interpolate a control
point. Indeed, d superimposed consecutive control points create
a crease in a degree d spline. A cubic example with a triple
control point (cyan) is shown in Fig. 1e. Note that the basis
function corresponding to the triple control point is given as the
sum of three B-splines.

In simple modelling systems which do not allow the user to
modify knot vectors, multiple coalescing control points may be
the only approach available to obtain creases without splitting
a curve into several pieces. However, this method suffers from
several disadvantages:

• Due to the flatness of the basis function corresponding to
the multiple control point (see Fig. 1e, right), a uniform
sampling of the parameter interval leads to a highly non-
uniform and dense distribution of points on the spline in
the neighbourhood of the multiple control point.
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triple knot - knot insertion
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Figure 1: A comparison of various cubic splines (left) and the basis functions
(right) used to generate them. All basis functions are either cubic B-splines or
obtained as their linear combinations. a)–d) The flexibility offered by modelling
systems that allow the user to modify knot vectors. Note that c) results from d)
by moving two knots to create a knot of multiplicity 3. e) The effect of a triple
control point (cyan) and the corresponding basis. f) Ghost points can be used
to force end-point interpolation without modifying the knot vector. g) Modify-
ing subdivision rules to allow for control points to be tagged either as smooth
(default) or sharp (green) offers intuitive control over the resulting spline. End-
points are marked as sharp implicitly even for smooth curves (shown in grey)
that have no internal points marked as sharp.
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• Multiple control points, especially for higher degree
splines, are difficult to handle for the user and have to be
handled properly by the system to avoid unexpected ef-
fects and loss of control.

• In the surface case, d2 coalescing control points are re-
quired to force interpolation in a bi-degree d patch and the
resulting shape is typically undesirable.

We do not pursue multiple control points any further.

A much cleaner approach is based on ghost control points
[21, 23, 13]; see Fig. 1f. In the cubic case, one adds an ex-
tra ghost point P−1 to the control polygon (P0,P1, . . .) of a
curve and requires the spline to interpolate P0 for t = 0. In the
uniform case, using e.g. blossoming [19] or (1), this leads to

6c(0) = P−1 + 4P0 +P1 = 6P0,

or equivalently P−1 = 2P0 −P1. The curve then changes to

cg(t) = B−1,4P−1 +B0,4P0 +B1,4P1 + . . . =

(2B−1,4 +B0,4)P0 + (B1,4 +B−1,4)P1 +B2,4P2 + . . .

with B−1,4 defined by the local knot vector (−1, 0, 1, 2, 3).
Thus the new basis, truncated at t = 0, becomes

(2B−1,4 +B0,4, B1,4 +B−1,4, B2,4, . . .). (3)

An example with ghost points is shown in Fig. 1f. It then fol-
lows that

cg(0) = P0, c′g(0) = P1 −P0, c′′g (0) = 0. (4)

Compared to c(t) defined over an open-uniform knot vector
with

c(0) = P0,

c′(0) = 3(P1 −P0),

c′′(0) = 6P0 − 9P1 + 3P2,

(5)

leading to Bézier end-conditions, the second derivative and cur-
vature of cg(t) vanish at t = 0. While this is acceptable in com-
puter graphics, vanishing curvature can be undesirable in CAD
applications.

One can proceed similarly and use ghost points for higher
degrees as well. For example for d = 5, one can introduce two
ghost points, P−1 and P−2, and require that c(0) = P0 and
c′(0) = α(P1 −P0). This leads to

120P0 = P−2 + 26P−1 + 66P0 + 26P1 +P2,

α(P1 −P0) = P2 + 10P1 − 10P−1 −P−2.
(6)

Consequently, with the choice of α = 24 giving the end-
derivative P1 − P0, one obtains the basis, again truncated at
t = 0,(

21
4 B−2,6 +

15
8 B−1,6 +B0,6,− 13

2 B−2,6 −
3
4B−1,6 +B1,6,

9
4B−2,6 −

1
8B−1,6 +B2,6, B2,3, . . .

)
,

(7)
shown in Fig. 2. Other choices of α are possible.

P0

P−1

P1

P−2

Figure 2: A quintic spline example given by (7) with the corresponding basis.
Ghost control points P−1 and P−2, computed from (6), have been used at one
end. Ghost points used at the other end are not shown.

2.2. Creases in subdivision curves

We now switch the view on the splines considered above
from basis-centred to subdivision-centred. It is well known (see
e.g. Chapter 32 of [20]) that the subdivision matrix Su for uni-
form cubic B-splines reads

Su =
1

8



. . .

4 4 0 0 0

1 6 1 0 0

0 4 4 0 0

0 1 6 1 0

0 0 4 4 0

0 0 1 6 1

0 0 0 4 4
. . .



(8)

and that the subdivision matrix S with Bézier end-conditions
given by an open-uniform knot vector reads

S =
1

8



8 0 0 0 0 0

4 4 0 0 0 0

0 6 2 0 0 0

0 3
2

11
2 1 0 0

0 0 4 4 0 0

0 0 1 6 1 0
. . .


. (9)

The uniform subdivision mask [1, 4, 6, 4, 1]/8 (or its portions)
is highlighted in bold.

In the case of the cubic basis (3) constructed using ghost
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points, the subdivision matrix T is easily verified to be

T =
1

8



8 0 0 0 0

4 4 0 0 0

1 6 1 0 0

0 4 4 0 0

0 1 6 1 0
. . .


. (10)

Note that only one row, the first one corresponding to the end
point, in T is different from the rows of Su in (8). It follows
that a subdivision implementation based on T is much simpler
than that based on S, yet achieves similar effects; compare the
curve in Fig. 1b to that in Fig. 1f. Moreover, using T, one
can simply mark control points as smooth or sharp, thus chang-
ing subdivision rules from [1, 6, 1]/8 to [8]/8 as requested by
the user. The rule [4, 4]/8 stays always the same. An example
is shown in Fig. 1g, which should be compared with Fig. 1c.
This idea appeared, in the surface case, in [9, 7] for Loop and
Catmull-Clark subdivision surfaces, respectively.

A natural question arises: Can one obtain similar results
for higher degree splines, including subdivision rules for sharp
creases and boundaries?

Let us inspect the quintic basis (7). It turns out that while
this basis gives creases and good end-conditions, it is not
subdivision-suitable. By that we mean that there is no subdi-
vision matrix T that links the basis (7) to its uniformly refined
counterpart with knots inserted into the middle of every knot
interval. The intuition behind this fact is simple: only four ba-
sis functions overlap the first knot span [0, 1] and thus the basis
does not possess full quintic reproduction there; see Fig. 2. In
fact, one can show, e.g. using the methods developed in Sec-
tion 3, that no choice of α in (6) gives a subdivision-suitable
basis. Hence one cannot trivially extend the method of [7] to
handle higher degrees and some new method must be sought.

3. Subdivision crease rules

Our goal is to find subdivision rules at creases in arbitrary de-
gree subdivision for piece-wise polynomial curves, but without
introducing new control points e.g. by knot insertion. We want
the cubic solution (10) to be only a special, degree three case of
a more general approach.

Sharp creases and boundary conditions are basically equiva-
lent, so we simply focus on boundary conditions only. Crease
rules can be obtained from boundary rules by symmetry.

Let B = (B0,k(t), B1,k(t), . . .) be the vector of B-splines
Bi,k(t) of degree d = k − 1 defined over the knot vector t =
[0, . . . , 0, 2, 4, 6, 8, . . .], where the knot at 0 has multiplicity k.
We use B to denote the basis itself as well.

We want to construct a new curve subdivision scheme, with
basis functions collected in a vector N, that produces piece-
wise polynomial curves of degree d and with the same continu-
ity as B (i.e., Cd−1 at all knots except C0 at 0). We require the
number of basis functions in N to be the same as for a uniform
B-spline basis with no knots multiple. The idea here is that we

4× B

N

Figure 3: The difference between the standard cubic B-spline basis B near a
knot of multiplicity 4, and the new basis N with one fewer (D = 1) basis
function. The natural configuration (given by Greville abscissae in the case of
B) is shown as bullets. Note that sufficiently far from the multiple knot, the
basis functions in B and N are the same uniform B-splines. Their Greville
abscissae are shown in cyan. Compared to four in the case of B, only three
basis function supports overlap the left-most non-zero knot span.

do not want any extra control structures, only the original poly-
gon with vertices marked as either smooth or sharp, in the spirit
of [7]. This may not be so important in the curve case, but is
of paramount importance on (subdivision) surfaces. Thus suffi-
ciently far from t = 0, N should be identical to B, but locally at
t = 0, N should haveD = (d−1)/2 fewer basis functions than
B for odd degrees; see Fig. 3. In the case of even degrees, the
difference is either D = d/2 − 1 or D = d/2 basis functions;
see Section 5 for more details on the choice of D.

Since B forms a basis of the space whose subspace we
want to span by N, a subspace selection matrix M exists such
that N = BM. Let S be the subdivision matrix for B, i.e.,
B = bS, where b is the refined basis over the finer knot vector
τ = [0, . . . , 0, 1, 2, 3, 4, . . .] with the knot at 0 of unchanged
multiplicity k.

We want N to be subdivision-suitable, so we require that
N = nT for some subdivision matrix T, where n is the refined
version of N defined over τ . Also, at the finer level, n = bM
must hold.

Putting all four matrix equations together

N = nT, B = bS, N = BM, n = bM, (11)

we see that
bSM = bMT. (12)

Since b forms a basis, we obtain that

SM = MT. (13)

In this equation for a particular degree d, S is known; it is
simply the B-spline subdivision matrix at a knot of multiplic-
ity d + 1 giving Bézier end conditions. If either M or T are
known, one can solve a system of linear equations to get the
other. However, in general, neither M nor T are known, and
one obtains a system of bilinear equations in the coefficients of
M and T. Thus, the overall algebraic degree of the problem can
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be very high. Not even modern computer algebra systems can
solve such a matrix equation in general. We now look at ways
of simplifying the matrix equation by inspecting the structures
of the matrices involved.

3.1. The matrix M

We require the coefficients of M to satisfy the following con-
ditions (further discussion can be found in Section 6):

(M1) The matrix M creates the new basis N from B. As B and
N partition unity, the rows of M must sum to one.

(M2) The support widths of basis functions of N should not
exceed the support width of the uniform B-spline Bd+1,
which is equal to d+ 1. Thus it follows that Mi,1 = 0 for
i > D + 1 and similarly for other columns of M.

(M3) Looking at boundary derivatives, it is undesirable for the
r-th derivative, 0 ≤ r ≤ d, of the new spline at 0 to be
influenced by more than r + 1 consecutive control points
(e.g. the derivative c′(0) should only depend on P0 and
P1, and not on P2). Since B

(r)
i (0) 6= 0 for 1 ≤ i ≤ d+ 1

and i−1 ≤ r ≤ d, it follows that all the entries to the right
of the main diagonal of M have to be zero, i.e., Mi,j =
0 for all i < j. In particular, combining this with (M1)
yields M1,1 = 1 and M1,j = 0 for all j > 1.

(M4) For a given degree d, the first uniform B-spline (not influ-
enced by the multiple boundary knot) is given by Bd+1.
Thus, it is reasonable to require that Ni−D = Bi for all
i > d; see Fig. 3. Hence, the bottom right block of M is
the unit matrix with the 1s corresponding to Mi,i−D = 1
for all i > d. Moreover, the elements of M above and to
the left of this unit block are zero.

(M5) [Optional] To guarantee c(0) 6= 0 for generic control poly-
gons, we require M2,1 6= 1. This softer condition appears
desirable, but (as is shown later) we may need to violate it.

Consequently, the matrix M assumes the form

M =

(
M̂d×(d−D) 0d×∞

0∞×(d−D) I∞×∞

)
, (14)

where 0 is a block of zeros and each block’s superscript denotes
its size (rows× columns). I is the infinite unit matrix. Only the
block M̂, which is lower triangular with bandwidth (D+1) due
to (M3), is of interest.

3.2. The matrix S

The subdivision matrix S for B-splines can be found using
e.g. the Oslo algorithm of [5]. In the cubic case with an open-
uniform knot vector it takes the form (9). For a general degree
d the matrix S has the structure

S =

 Ŝ2d×d 0d×∞

S∞×∞u
0∞×d

 , (15)

where the block denoted by Ŝ has entries influenced by the mul-
tiple knot at t = 0, and Su is the subdivision matrix for uniform
B-splines, whose columns, i.e., subdivision masks, are given by
scaled binomial coefficients; cf. (8).

3.3. The matrix T

We now look at the structure of T.

(T1) Since T is a subdivision matrix, its rows (stencils) sum to
1.

(T2) Due to (M4), from the (d−D+ 1)-th column onward the
mask has to be that of a uniform B-spline of degree d.

(T3) Using the support width of N1, we see that only the first
D + 2 basis functions of n can contribute to form N1.
Thus, Ti,1 = 0 for all i > D + 2 and analogously for
other columns of T. Moreover, turning to (M3) and the
derivatives of N and n at zero, and the fact that we deal
with binary subdivision, it follows that Ti,j = 0 for all
i > 2j +D and T is lower triangular.

(T4) [Optional] To guarantee polynomial reproduction up to de-
gree at least d −D − 1 at t = 0, we require Ti,i =

1
2i−1

for i = 1, . . . , d − D; see [25]. This is a soft condition,
and, as (M5), is mentioned explicitly when invoked.

Consequently, T has its structure similar to that of S. Indeed,

T =

 T̂(2d−D)×(d−D)
0(d−D)×∞

S∞×∞u
0∞×(d−D)

 . (16)

Having now determined the general form of the three matri-
ces, we turn to consider specific examples.

4. Odd degrees

We start by looking at odd degrees. Even degrees are dis-
cussed in Section 5.

4.1. Degree 3

In the case of degree three, D = 1 and S is given in (9). Due
to conditions (M1)–(M4), we expect M̂ to be of the form

M̂ =

 1 0

m1 1−m1

0 1

 (17)

with one unknown parameter, m1.
Defining c(t) =

∑n−1
i=0 Ni,k(t)Pi and looking at the value

and (right) derivative of the resulting curve at zero, we obtain

c(0) = P0, c′(0) = 3(1−m1)(P1 −P0). (18)

Thus if one desires the end derivative to be generically non-
zero, m1 must differ from 1, as (M5) dictates.
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C2 C2C1C1

Figure 4: A cubic example governed by T2 in (22) and the corresponding basis.
The curve controlled by the same polygon but obtained using T1 in (21) is
shown in grey for comparison. Note that the continuity of the basis functions in
N2 at the central knot (in green) is at least C1, yet a sharp feature is produced.

In the case of T we have

T =
1

8



8 0 0 0 0

t1 8− t1 0 0 0

t2 7− t2 1 0 0

0 4 4 0 0

0 1 6 1 0
. . .


, (19)

where the uniform masks are shown in bold; see (T2). This
leaves T with two unknown parameters, t1 and t2.

Forming SM = MT (see (13)) gives the following system
of three equations for three unknowns

t1m1 − t1 − 4m1 = 4, t1 = 6m1, 2t2 = 3m1, (20)

which has two solutions

m1 = 2
3 , t1 = 4, t2 = 1,

m1 = 1, t1 = 6, t2 = 3
2 ,

with the corresponding matrices (we omit
. . . from now on)

M1 =



1 0 0 0 0
2
3

1
3 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, T1 =

1

8


8 0 0 0 0

4 4 0 0 0

1 6 1 0 0

0 4 4 0 0

0 1 6 1 0

 (21)

and

M2 =



1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, T2 =

1

8


8 0 0 0 0

6 2 0 0 0
3
2

11
2 1 0 0

0 4 4 0 0

0 1 6 1 0

 .

(22)

The first solution is the one encountered in (10) and confirms
that this subdivision matrix leads to piece-wise cubic curves
with creases. The corresponding basis functions are obtained
from N = BM; see Fig. 1f.

The second solution may not be desirable as c′(0) = 0; cf.
(18). It is also more difficult to implement as a subdivision
scheme. On the other hand, the tangent at t = 0 is given by the
second derivative, which is equal to 3(P1 − P0), and geomet-
rically, the resulting curve is well behaved; see Fig. 4.

Following the analysis used in [20], we obtain the follow-
ing eigen-components of the subdivision matrices (S of (9) is
included as reference):

S

λ0 = 1 v0 = (1, 1, 1, 1, 1, 1)

λ1 = 1
2 v1 = (0, 1, 3, 6, 9, 12)

λ2 = 1
4 v2 = (0, 0, 2, 11, 26, 47)

λ3 = 1
8 v3 = (0, 0, 0, 1, 4, 10)

T1

λ0 = 1 v0 = (1, 1, 1, 1, 1, 1)

λ1 = 1
2 v1 = (0, 1, 2, 3, 4, 5)

λ2 = 1
8 v2 = (0, 0, 1, 4, 10, 20)

T2

λ0 = 1 v0 = (1, 1, 1, 1, 1, 1)

λ1 = 1
4 v1 = (0, 2, 11, 26, 47, 74)

λ2 = 1
8 v2 = (0, 0, 1, 4, 10, 20)

(23)

The values λ0, λ1, λ2 are the dominant, subdominant, and sub-
subdominant eigenvalues (directly determined from the diago-
nals of T{1,2}), and v0,v1,v2 the corresponding unnormalised
right eigenvectors. It follows that T1 behaves ‘better’ in the
sense that it produces uniform point distributions towards the
limit as subdivision proceeds; see Fig. 3, bottom. Indeed, its
natural configuration, given by v1, is linear and uniform. Left
eigenvectors associated with λ1 then confirm that the tangent at
t = 0 is given by P0P1 in both cases.

Looking at polynomial reproduction as approached in [25],
we see from (23) that T1 misses quadratics (those would cor-
respond to λ = 1

4 ), while T2 misses linear functions (λ = 1
2 ).

This was to be expected as N spans only a subspace of the
space spanned by B. From this point of view, the solution with
the longest uninterrupted sequence of eigenvalues following the
pattern (1, 12 ,

1
4 , . . . ,

1
2l
, . . .) can be considered ‘best’ as such

solution can reproduce polynomials at t = 0 up to degree l, in
accord with (T4).

It is worth pointing out that in N2 (that corresponds to the
solution M2), the basis function corresponding to the crease is
C2, although it is obtained as a combination of C0 B-splines;
see Fig. 4.

It is interesting to note that there are two and only two so-
lutions. Overall, T1 is the preferred and popular solution [7],
while T2 has not appeared in the literature. We proceed to solve
the quintic case in a similar fashion.

4.2. Degree 5

As discussed previously, there is no obvious solution to the
case of degree 5 or higher odd degree.
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N1 N2 N3

sharp

smooth

sharp

smooth

sharp

smooth

Figure 5: Three examples given by N{1,2,3} corresponding to (27–29) for degree 5 are shown. Due to symmetry, only a half of the basis functions corresponding
to the red portions of the curves is shown. The smooth curve whose top right control point (green) is marked as smooth is shown in grey as reference.

For degree 5 and D = 2 we have

S =
1

32



32 0 0 0 0 0 0 0 0

16 16 0 0 0 0 0 0 0

0 24 8 0 0 0 0 0 0

0 6 22 4 0 0 0 0 0

0 0 40
3

50
3 2 0 0 0 0

0 0 20
9

625
36

137
12 1 0 0 0

0 0 0 15
2

37
2 6 0 0 0

0 0 0 5
4

59
4 15 1 0 0

0 0 0 0 6 20 6 0 0


. (24)

Subjecting M̂ and T to our conditions we obtain

M̂ =


1 0 0

m1 1−m1 0

m2 m3 1−m2 −m3

0 m4 1−m4

0 0 1

 (25)

and

T =
1

32



32 0 0 0 0 0 0

t1 32− t1 0 0 0 0 0

t2 t3 32− t2 − t3 0 0 0 0

t4 t5 31− t4 − t5 1 0 0 0

0 t6 26− t6 6 0 0 0

0 t7 16− t7 15 1 0 0

0 0 6 20 6 0 0


(26)

with 4 and 7 free parameters, respectively.
The matrix equation SM = MT again leads to a well-

determined problem. Using e.g. Gröbner basis computations,
one obtains two cubic equations, all other equations are linear.
The system then gives nine real solutions and all resulting ma-
trices have positive coefficients.

The condition (M5), i.e., m1 6= 1, reduces the number of
solutions of (13) for d = 5 to three:

M̂1 =


1 0 0
5
6

1
6 0

1
2

1
2 0

0 1 0

0 0 1

,T1 =
1

32



32 0 0 0 0

16 16 0 0 0
20
3

70
3 2 0 0

10
9

665
36

137
12 1 0

0 15
2

37
2 6 0

0 5
4

59
4 15 1

0 0 6 20 6


,

(27)

M̂2 =


1 0 0
49
60

11
60 0

9
20

11
20 0

0 22
25

3
25

0 0 1

,T2 =
1

32



32 0 0 0

16 16 0 0 0

6 22 4 0 0

1 33
2

27
2 1 0

0 33
5

97
5 6 0

0 11
10

149
10 15 1

0 0 6 20 6


,

(28)
and

M̂3 =


1 0 0
19
25

6
25 0

9
25

102
175

2
35

0 24
35

11
35

0 0 1

,T3 =
1

32



32 0 0 0 0

16 16 0 0 0
24
5

96
5 8 0 0

4
5

66
5 17 1 0

0 36
7

146
7 6 0

0 6
7

106
7 15 1

0 0 6 20 6


.

(29)
Looking at the eigenstructures of the subdivision matrices listed
above, we see that T3 possesses the best sequence of non-zero
eigenvalues 1, 12 ,

1
4 ,

1
32 , which leads to polynomial reproduction

of degree up to 2 at t = 0, in accord with (T4). The end-
conditions produced by T3 are c(0) = P0, c′(0) = 6

5 (P1 −
P0), and c′′(0) = 4

5P0 − 48
35P1 +

4
7P2.

Examples using the three solutions listed above are shown in
Fig. 5 along with the basis functions of N1, N2, and N3. Note
that visually, the three solutions produce very similar results.
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The remaining six solutions with vanishing first end-derivative
produce curves that behave similarly, too.

4.3. Degree 7 and higher

For degree 7 and D = 3 we have

S =
1

128



128 0 0 0 0 0 0 0

64 64 0 0 0 0 0 0

0 96 32 0 0 0 0 0

0 24 88 16 0 0 0 0

0 0 160
3

200
3

8 0 0 0

0 0 80
9

625
9

137
3

4 0 0

0 0 0 105
4

1407
20

147
5

2 0

0 0 0 105
32

35259
800

12299
200

363
20

1

0 0 0 0 336
25

1484
25

236
5

8

0 0 0 0 42
25

798
25

327
5

28

0 0 0 0 0 28
3

164
3

56

0 0 0 0 0 7
6

167
6

70


. (30)

Note that seven masks in S are affected by the multiple knot.
Using our approach, the resulting T will have only d − D =
7−3 = 4 such masks before returning to uniform ones, making
it much simpler to implement as a subdivision scheme.

Subjecting M and T to our conditions for degree 7 we obtain
two matrices with 9 and 15 free parameters, respectively. The
matrix equation SM = MT leads to a well-determined sys-
tem of three equations of degree four, again obtained by using
Gröbner bases, with 64 solutions. All have positive coefficients
and 16 of those satisfy (M5).

Subjecting these solutions to (T4) leads to one solution (ob-
tained by solving a system of linear equations) given by

M̂1 =



1 0 0 0
57
70

13
70 0 0

1
2

351
770

17
385 0

32
175

2301
3850

1139
5390

2
245

0 65
154

1649
3234

10
147

0 0 34
49

15
49

0 0 0 1


, (31)

and the corresponding

T1 =
1

128



128 0 0 0 0 0 0

64 64 0 0 0 0 0
384
17

1248
17 32 0 0 0 0

24
5

2496
55

680
11 16 0 0 0

3
5

1131
55

3621
55 40 1 0 0

0 312
55

18496
385

464
7 8 0 0

0 39
55

8857
385

527
7 28 1 0

0 0 136
21

1208
21 56 8 0

0 0 17
21

592
21 70 28 1

0 0 0 8 56 56 8



(32)

has the spectrum (1, 12 ,
1
4 ,

1
8 ,

1
128 , 0, 0, . . .), confirming cubic re-

production at t = 0.

3× B

Figure 6: The Greville abscissae (bullets) of a quadratic B-spline basis B near a
triple knot. Note that sufficiently far from the triple knot, control points (cyan)
are logically associated with knot intervals. This is in contrast to Fig. 3, where
control points are associated with knots.

P0

P1

P̃0

Figure 7: Replacing P0 with P̃0 forces the curve to interpolate P0 without
the need for modifying uniform subdivision rules used to generate uniform
quadratic splines.

For degrees higher than 7 one obtains matrices M and T with
even more free parameters (the number of parameters goes up
quadratically with degree; see Table 1). The resulting system of
equations is likely to contain equations of degrees 5 and higher
in its Gröbner basis, and thus possibly not directly solvable in
radicals. However, since one expects solutions expressible with
rational numbers, it is very likely that exact solutions can still
be obtained. Also, one could restrict the number of parameters
and thus reduce the algebraic degree of equations involved by
employing further conditions.

By imposing (T4), we observed that the problem reduces to
a linear one for odd degrees up to 21. We emphasise that some
of the equations obtained directly from (13) are still bilinear in
the parameters ti and mj , and only a detailed analysis reveals
that the system is equivalent to a linear one.

5. Even degrees

Having analysed odd degrees in detail, we now turn to even
degrees. As can be seen in Fig. 3, control points are logically
associated with knots in odd degree curves. In the case of even
degrees, this relationship changes: control points are associated
with knot intervals; see Fig. 6.

This fact slightly complicates the investigation of even de-
gree curves: when the user marks a control point as sharp,
which knot value should be used to represent the crease? This
question lends itself to two answers: D = d/2−1 or D = d/2.
We address both of these options, starting with degree 2.

5.1. Degree 2

We note that using ghost points does not work for degree
2. Indeed, requiring that c(0) = P0 = (P−1 + P0)/2 leads
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to P−1 = P0, and the resulting curve starts with a straight
segment between P0 and (P0 +P1)/2.

One can also easily verify that setting D = d/2 = 1 and
using our matrix approach leads to the same problem. The other
optionD = d/2−1 = 0 simply returns the solution with a triple
knot as shown in Fig. 6, governed by the subdivision matrix

S =
1

4


4 0 0

2 2 0

0 3 1

0 1 3
. . .

 (33)

with the uniform quadratic mask [1, 3, 3, 1].
If one wants to avoid using multiple knots completely and

use a uniform knot vector and thus the unmodified (although
truncated) uniform quadratic subdivision matrix

Su =
1

4


3 1 0

1 3 0

0 3 1

0 1 3
. . .

 (34)

instead, one can play the following trick: display the input con-
trol points to the user as usual, but replace P0 with P̃0 =
2P0 − P1 internally for subdivision. The resulting curve dis-
played to the user is then equivalent to the one obtained by using
a triple knot; see Fig. 7. Note that this is different from using a
ghost point.

5.2. Degree 4
Addressing ghost points first, we obtain that c′(0) =

−16P0 + 14P1 + 2P2 when using only one ghost point P−1.
This violates the principle behind (M3). Using two ghost
points, as in the degree 5 case in (6), yields the system

24P0 = P−2 + 11P−1 + 11P0 +P1,

α(P1 −P0) = P1 + 3P0 − 3P−1 −P−2.
(35)

However, as with d = 5, this system leads to a basis that is
not subdivision-suitable. In summary, ghost points lead to a
solution that satisfies all our conditions, except (T4), for d = 3
only; see (21).

Turning to our approach, when d = 4, we have

S =



16 0 0 0 0 0 0 0

8 8 0 0 0 0 0 0

0 12 4 0 0 0 0 0

0 3 11 2 0 0 0 0

0 0 20
3

25
3 1 0 0 0

0 0 4
3

29
3 5 0 0 0

0 0 0 5 10 1 0 0

0 0 0 1 10 5 0 0


(36)

with the uniform quartic subdivision mask [1, 5, 10, 10, 5, 1].
If we set D = 1, we obtain

M̂ =


1 0 0

m1 1−m1 0

0 m2 1−m2

0 0 1

 , (37)

T =
1

16



16 0 0 0 0

t1 16− t1 0 0 0

t2 t3 16− t2 − t3 0 0

0 t4 15− t4 1 0

0 t5 11− t5 5 0

0 0 5 10 1


(38)

with 2 and 5 parameters, respectively. The system SM = MT
leads to 4 solutions (obtained by solving two quadratic equa-
tions), two of which satisfy (M5). The best solution selected by
(T4) then reads

M̂1 =


1 0 0
4
7

3
7 0

0 9
11

2
11

0 0 1

,T1 =
1

16



16 0 0 0 0

8 8 0 0 0
12
7

72
7 4 0 0

0 60
11

105
11 1 0

0 12
11

109
11 5 0

0 0 5 10 1


(39)

and possesses quadratic reproduction at t = 0. Its end-
conditions are c(0) = P0, c′(0) = 12

7 (P1 −P0), and c′′(0) =
12
7 P0 − 216

77 P1 +
12
11P2.

On the other hand, setting D = 2 yields

M̂ =


1 0

m1 1−m1

m2 1−m2

0 1

,T =
1

16


16 0 0 0

t1 16− t1 0 0

t2 15− t2 1 0

t3 11− t3 5 0

0 5 10 1


(40)

with 2 and 3 free parameters, respectively. The system SM =
MT in this case leads to 3 solutions (given by a cubic equa-
tion). Only one solution satisfies both (M5) and (T4):

M̂2 =


1 0
5
6

1
6

1
2

1
2

0 1

 ,T2 =
1

16


16 0 0 0

8 8 0 0
10
3

35
3 1 0

2
3

31
3 5 0

0 5 10 1

 (41)

with only linear reproduction at t = 0. The corresponding end-
conditions are c(0) = P0, c′(0) = 2

3 (P1−P0), and all higher-
order derivatives at t = 0 vanish.

The two solutions governed by T1 and T2, along with the
one given by S, are compared in Fig. 8.
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sharp

smooth

sharp

smooth

sharp

smooth

5× 5×

B N1 N2

Figure 8: Three examples given by B and N1,2 corresponding to (36) and (39–41), respectively, for degree 4 are shown. The smooth curve whose top right control
point (green) is marked as smooth is shown in grey as reference. Note that the B-spline solution (left) with knots of multiplicity five deviates the most (measured
along the curves) from the grey, smooth curve, while the one given by N2 deviates the least. This is caused by the fact that the subdivision rules of T2 in (41) return
to the regular rules sooner than those of T1 in (39) and S in (36) as one moves away from the crease.

5.3. Degree 6 and higher

The subdivision matrix for d = 6 reads

S =
1

64



64 0 0 0 0 0 0 0 0

32 32 0 0 0 0 0 0 0

0 48 16 0 0 0 0 0 0

0 12 44 8 0 0 0 0 0

0 0 80
3

100
3 4 0 0 0 0

0 0 40
9

625
18

137
6 2 0 0 0

0 0 0 105
8

1407
40

147
10 1 0 0

0 0 0 15
8

969
40

309
10 7 0 0

0 0 0 0 42
5

168
5 21 1 0

0 0 0 0 6
5

104
5 35 7 0

0 0 0 0 0 7 35 21 1



. (42)

With D = 2, M and T have 6 and 12 free parameters, re-
spectively. The system given by SM = MT leads again to a
well determined problem with 27 solutions (obtained by solv-
ing three cubic equations). Of these, 9 satisfy (M5). The best
solution selected by (T4) then is

M̂1 =



1 0 0 0
13
18

5
18 0 0

3
10

35
58

14
145 0

0 16
29

917
2175

2
75

0 0 7
9

2
9

0 0 0 1


, (43)

T1 =
1

64



64 0 0 0 0 0 0

32 32 0 0 0 0 0
208
21

800
21 16 0 0 0 0

4
3

1900
87

952
29 8 0 0 0

0 210
29

14308
435

343
15 1 0 0

0 30
29

1708
87

109
3 7 0 0

0 0 98
15

532
15 21 1 0

0 0 14
15

316
15 35 7 0

0 0 0 7 35 21 1


(44)

with cubic reproduction at t = 0.
When D = 3, M and T have 6 and 9 degrees of freedom,

respectively. The associated system has 16 solutions, four of
which satisfy (M5). Imposing (T4) then gives a single solution

M̂2 =



1 0 0
11
13

2
13 0

37
65

90
221

2
85

16
65

138
221

11
85

0 10
17

7
17

0 0 1


, (45)

T2 =
1

64



64 0 0 0 0 0

32 32 0 0 0 0
144
13

480
13 16 0 0 0

42
13

6384
221

525
17 1 0 0

6
13

3408
221

699
17 7 0 0

0 84
17

630
17 21 1 0

0 12
17

362
17 35 7 0

0 0 7 35 21 1


(46)

with quadratic reproduction at t = 0.

From the above examples for degrees 4 and 6 we see that
the situation for even degrees is very similar to that for odd
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Table 1: A summary of our results. From the third column: #sols. stands for
the total number of solutions, (M5) is the number of solutions satisfying this
condition, #m is the number of parameters in M̂, #t denotes the number of
parameters in T̂, and GB stands for the polynomial degrees in the Gröbner basis
associated with SM = MT (linear equations are ignored) without imposing
(T4). The abbreviation ‘DNC’ stands for ‘did not compute’ (the Gröbner basis
computation ran out of memory). In the rows with ‘DNC’, + means that there
are probably more solutions, but those could have been missed by the method
used (Maple’s solve() function). The last three rows extrapolate our results to
higher degrees (a = b− 1, c = b+1); the entries in bold are provably correct.

d D #sols. (M5) #m #t GB

3 1 2 1 1 2 2

4
2 3 1 2 3 3

1 4 2 2 5 2, 2

5 2 9 3 4 7 3, 3

6
3 16 4 6 9 4, 4

2 27 9 6 12 3, 3, 3

7 3 64 16 9 15 4, 4, 4

8
4 125 25 12 18 5, 5, 5

3 100+ 52+ 12 22 DNC

9 4 100+ 40+ 16 26 DNC

2b+1 b cb ca b2 3b2+b
2 cb

2b
b ca cb−2 ab 3jb

2 ca

a bb ba ab 3b2−b
2 bb

ones. The difference between choosing D = d/2 − 1 or D =
d/2 is mainly in the fact that the former option yields higher
polynomial reproduction at t = 0, whereas the latter produces
curves that differ less from the smooth curves as there are fewer
irregular subdivision masks and stencils involved.

The observation of Section 4.3 applies to even degrees as
well: By imposing (T4), the problem of finding the end-
conditions and crease rules simplifies to a linear problem with
a unique solution for any degree d > 1.

Our findings are summarised in Table 1. All symbolic com-
putations have been performed using Maplesoft’s Maple 14 on
a Linux system with 8GB of RAM. Extrapolating our results
(last three rows in Table 1) to arbitrary degrees suggests very
high degrees of the equations involved, unless (T4) is used to
reduce the problem to a linear one.

We emphasise that in the case of d = 8 and D = 4, the sys-
tem of equations given by SM = MT is equivalent to a system
with three quintic polynomials (the remaining equations are lin-
ear). Still, we were able to obtain all 125 solutions exactly.

6. Breaking the rules

We have fixed a number of restrictions on M and T in Sec-
tions 3.1 and 3.3, respectively. We now look at each restriction
in turn and analyse whether it can be lifted and at what cost.

We start with the matrix M:

(M1) This is a natural restriction. While bases that do not parti-
tion unity are possible, they do not alter the resulting space
they span or produce piece-wise rational (instead of poly-
nomial) curves.

(M2) While we could allow basis functions in N to have larger
supports than those in B, this would not make N span
a richer space. Larger supports may easily lead to local
linear dependencies of basis functions (also called over-
loaded elements in the literature).

(M3) This restriction could be lifted, if one is prepared to allow
e.g. that c′(0) = α0P0 + α1P1 + α2P2 for some values
of α0, α1, and α2 6= 0. We regard this as geometrically
undesirable and not intuitive for a designer.

(M4) This condition could be relaxed, but we do not see any
point in altering basis functions that are not influenced by
the multiple boundary (or crease) knot.

(M5) This soft condition is only optional.

We now turn to T, whose existence is equivalent to N being
subdivision-suitable:

(T1) This restriction cannot be relaxed.

(T2) This condition is linked to (M4), and thus fixed.

(T3) The support widths of the refined basis functions in n are
directly linked to the original ones in N. Relaxing this
restriction would only lead to more linear equations ex-
pressing that the new parameters must be equal to zero,
unless (M3) is relaxed as well.

(T4) The requirement on the eigenvalues is only optional, but
guarantees the best possible polynomial reproduction at
creases/end-points.

Note that one could try to construct the matrix T directly
from end-derivatives given by differences of control points,
and/or eigenstructure. This approach, however, does not guar-
antee that the curves generated by such a subdivision matrix
would be piece-wise polynomial (with finitely many pieces over
finite knot intervals).

In the case of odd degrees, our choice of D = (d − 1)/2
directly corresponds to the number of control points introduced
by changing the multiplicity of a knot from one (corresponding
to a control point marked as smooth) to d (corresponding to a
sharp control point). Consequently, no new control points need
to be introduced using our approach when marking a control
point as sharp. Nevertheless, one can still ask what would other
values of D lead to. Clearly, D = 0 leads to M being the iden-
tity matrix and we get N = B, understood component-wise, as
expected. The other extreme would be to set D = d− 1, which
yields N0,k =

∑d
i=0Bi,k, leading to undesirable effects such

as only constant reproduction. Values ofD ∈ [1, . . . , d−2] then
offer a range of schemes with a trade-off between polynomial
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reproduction and simplicity of subdivision matrices. Similar
arguments apply to even degree subdivision schemes as well.

As an example, consider quintics with D = 1 and D = 3.
The former choice leads to a scheme with cubic reproduction at
t = 0 and the corresponding T contains four irregular masks.
Eight such solutions exist, with four satisfying (M5) and one
solution (T4). On the other hand, the latter choice provides only
linear reproduction but with only two irregular masks. Four
solutions exist and only one satisfies (M5), and also (T4).

Based on our observations for both odd and even degrees, we
formulate the following

Conjecture 1. By imposing all our conditions including (T4),
the bilinear system given by SM = MT for any d > 1 and any
value of D ∈ [0, . . . , d− 1] is equivalent to a linear one with a
unique solution having the best possible reproduction degree.

7. Conclusions and future challenges

Using a set of conditions that a desirable B-spline-based sub-
division scheme with crease control should satisfy, we have pre-
sented a general approach to finding such schemes. Our method
allows for a complete classification of these schemes up to de-
gree 7, beyond which the complexity of the problem becomes
prohibitive. Employing an extra condition on the eigenvalues
of the subdivision matrix, and thus achieving the best polyno-
mial reproduction at end-points, the problem is conjectured to
reduce to a linear one with a unique solution for any degree.

In contrast to knot insertion, our method does not introduce
any new control points and does not require the user to modify
knot vectors when points are required to become creases and be
interpolated. This leads to an intuitive and clean user interface.
We have also shown that ghost points cannot be used to match
the superior behaviour of our results. Ghost points either lead
to bases that are not subdivision-suitable, or result in geometri-
cally undesirable end-conditions.

It has not escaped our notice that relaxing some of the rules
(in particular (M3), the rule about end-conditions), one can get
simpler matrices with more regular stencils in them. These sim-
pler matrices allow much easier implementation of sharp and
semi-sharp methods, in the spirit of [7]. We will investigate this
family of methods in future work.

Generalising our results to tensor-product surfaces is
straightforward. Using our new sets of basis functions, a crease
can be allowed to run along a knot line. But when viewed as
subdivision surfaces, creases could potentially be allowed to
stop or smooth out gradually, as in [7, 22, 17, 16, 12].

Our method is based on direct manipulation of subdivision
masks and stencils. It would be interesting to investigate similar
approaches, but in combination with multi-stage methods, e.g.
with those developed in [14, 4]. In the uniform surface case,
this would lead to creases for the family of schemes introduced
in [24], and in the non-uniform setting to crease rules for the
NURBS-compatible framework developed in [3].
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