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Abstract
We deal with subdivision schemes based on arbitrary degree B-splines. We focus on extraordinary knots which exhibit various
levels of complexity in terms of both valency and multiplicity of knot lines emanating from such knots. The purpose of truncated
multiple knot lines is to model creases which fair out. Our construction supports any degree and any knot line multiplicity and
provides a modelling framework familiar to users used to B-splines and NURBS systems.
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1. Introduction

We demonstrate how creases can be added to Cashman’s
non-uniform rational B-spline (NURBS)-compatible subdivi-
sion [Cas10]. We produce creases that are mathematically similar to
creases in NURBS surfaces, but with the additional feature that they
can start and stop at arbitrary knots, fairing out smoothly to nor-
mal surface. Our creases are different in character from DeRose’s
creases [DKT98], which are for Catmull-Clark (degree 3) subdivi-
sion surfaces [CC78], and our creases are applicable to subdivision
surfaces of any degree, not just those of degree three.

NURBS surfaces and subdivision surfaces are two of the princi-
pal surface representations used in industry. NURBS is industry-
standard in CAD. Subdivision surfaces are widely used in 3D
computer animation. Both can be considered to be different types of
generalization of tensor-product uniform B-splines. NURBS gen-
eralizes to non-uniform knot spacing and to rational functions via
weights, providing such features as perfect circular cross-sections,
but maintains the constraint that the control mesh must be a rect-
angular array of control vertices. Subdivision surfaces generalize
to arbitrary topology, but typically maintain the constraint that the
underlying foundation is uniform. Practical subdivision surfaces are
either quadratic (degree 2) or cubic (degree 3). NURBS surfaces can
be of any degree, with commercial systems offering degrees up to
above 20.

Cashman [CADS09; Cas10] developed NURBS-compatible sub-
division, which provided a subdivision mechanism for a true
superset of NURBS for arbitrary odd degree. That is, it is a gener-
alization of non-uniform tensor-product B-splines. Therefore, any
odd-degree NURBS can be represented in Cashman’s formulation,
with the advantage of arbitrary topology.

Our work considers creases in surfaces. Creases are an important
modelling ingredient. Standard subdivision surfaces are smooth ev-
erywhere. It is known that using an everywhere smooth surface to
model sharp features results in poor geometric fit and unwanted
undulations [HDD*94].

We introduce a further generalization of Cashman’s subdivision
framework that supports modelling with creases (Figure 1). Our ap-
proach is based both on Cashman’s subdivision framework [Cas10]
and on arbitrary degree T-constructions, e.g. [Fin08; DLP13].

Traditional subdivision surfaces are a generalization of uniform
tensor product B-splines [CC78]. Cashman’s surfaces are a general-
ization of non-uniform tensor product B-splines [Cas10]. Creases in
subdivision surfaces based on non-uniform tensor product B-splines
can be achieved by three methods:
� by making control vertices coalesce,
� by modifying subdivision rules,
� by allowing knot lines to be multiple.
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Figure 1: From left: the control mesh of a car model (inspired by Pixar’s Cars). Extraordinary vertices are marked by cyan bullets. Edges
corresponding to multiple knot lines are shown in green (double) and red (triple). The limit surface with creases and a close-up showing a
vanishing feature running into an extraordinary point of valency 3.

We investigate the third approach. It exposes limitations in Cash-
man’s framework. Cashman’s framework allows multiple knot lines,
provided that the crease propagates across the entire mesh, from
one boundary to another (or, equivalently, forms a closed loop).
This is a significant limitation. Our construction, by contrast, al-
lows multiple knot lines to terminate at any knot, rather than just
at a boundary. The corresponding discontinuity in the surface then
fairs out smoothly as shown in Figure 1. This extends the capabil-
ity of Cashman’s framework, enabling a wider range of surfaces to
be modelled. Our construction yields subdivision surfaces of any
degree.

2. Related Work

Our work is not the first to consider the addition of creases to
subdivision surfaces. Semi-sharp creases, introduced by DeRose
et al. [DKT98], provide an elegant algorithmic approach. DeRose’s
idea is to use crease rules for the first few subdivision steps and then
switch to normal rules. This allows for edges with a range of visual
sharpness. DeRose’s method could, in principle, generalize to any
degree. However, the actual implementation supports degree three
only and it is far from obvious how to handle extraordinary regions
with creases for higher degrees. This is owing to the fact that the
number of stencils increases quadratically with degree and linearly
with valency at extraordinary vertices and faces.

Other examples of modifying rules of Catmull-Clark subdivision
include fine level feature editing [KS99; BMZB02] and normal
control [BLZ00]. DeRose’s idea [DKT98] has also been used for
surface fitting with semi-sharp features [LD09].

Early attempts at bivariate non-uniform subdivision for arbitrary
topology include Sederberg’s NURSS [SZSS98]. While successful,
only degrees two and three are supported and there are no continuity
guarantees when multiple knot lines are present.

Müller [MRF06; MFR*10] introduced a new variant of Catmull-
Clark which allows for varying knot intervals. Direct evaluation
of the limit surface is also available. Müller’s schemes recreate
Catmull-Clark patches in neighbourhoods of extraordinary vertices.
Therefore, multiple knot lines, which are supported in regular re-
gions, cannot influence extraordinary regions, unlike our method

which can support multiple truncated knot lines that terminate at an
extraordinary knot.

More recently, Huang and Wang [HW11] extended Doo-Sabin
subdivision to the non-uniform case, including double knot lines.
This construction is limited to degree two only and lacks a complete
continuity analysis.

Cashman’s ‘NURBS-compatible subdivision’ [CADS09; Cas10]
is a bivariate generalization of his own univariate refine-and-
smooth formulation [CDS09]. Cashman’s framework allows multi-
ple knot lines, but not in extraordinary regions. More precisely, a
multiple knot line cannot run through or terminate at an extraordi-
nary knot. Also, multiple knot lines (just as single knot lines) need to
run across the whole surface along a strip of quads and can terminate
only at the boundary. These shortcomings motivated our research.

Our contribution is related to so-called T-constructions (see Sec-
tion 5), which include T-splines [SZBN03], hierarchical B-splines
[FB88; VGJS11], truncated B-splines [GJS12], LR B-splines
[DLP13] and T-meshes [DCL*08]. However, our approach is differ-
ent: we do not consider T-constructions but rather we first consider
subdivision rules in the vicinity of a truncated knot line and from
this we are able to deduce subdivision rules for the neighbourhoods
of knots of arbitrary valency and complexity.

3. Our Contribution

The purpose of our truncated multiple knot lines is to model
creases (discontinuities of certain derivatives in general) which fair
out. We

� can make multiple knot lines stop at any knot,
� make creases fair out smoothly,
� support any degree and multiplicity,
� can combine our construction with tuning for bounded curvature,

for good Gaussian curvature behaviour, and potentially other
tuning approaches,

� provide a modelling framework familiar to users used to B-
splines and NURBS systems,

� can introduce new freedoms automatically using knot insertion.

C© 2013 The Authors
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Note that our creases can terminate at any point corresponding
to a knot, whether extraordinary or not, thus we can even produce
creases that run part way across what would otherwise be a normal
NURBS patch; e.g. Figure 3(c)–(f).

As we show below, the presence of truncated multiple knot lines
causes the interplay between the knot mesh and the control mesh
to become non-trivial: they do not have the same connectivity even
for odd degrees (this also applies to T-constructions). This makes
the investigation of subdivision more challenging. Our approach
provides one solution to this disparity.

To provide a good understanding of our contribution, we first
explain the different types of extraordinary knots that can arise in a
general mesh (Section 4). We then introduce the simplest non-trivial
extraordinary knot as a worked example of knot line truncation
at an extraordinary knot (Section 5) leading to subdivision rules
for extraordinary vertices and faces of this type (Section 6). We
generalize this example to rules for extraordinary knots at which any
type of multiple knot line terminates (Section 7). Having presented
the new work discursively (Sections 5-7), we summarize it more
rigorously (Section 8). Continuity of our surfaces is discussed in
Section 9.

4. A Characterization of Extraordinary Knots

Traditionally, when dealing with generalizations of tensor-product
splines, a vertex within the control mesh is called ordinary if it has
valency 4 and extraordinary if it has valency other than 4 (and anal-
ogously for faces). This terminology breaks down when multiple
and truncated knot lines are present. In order to avoid the terminol-
ogy problem, we focus on the knot mesh, i.e. the partitioning of the
parameter space (a manifold in general) with respect to knot lines,
instead of the control mesh. A vertex in the knot mesh is called a
knot and its valency is equal to the number of knot lines emanating
from it, counted without multiplicities.

In our figures, knot meshes are depicted in grey, control meshes
and their vertices are depicted in black (e.g. see Figure 5). We
also note that we associate control vertices with their Greville
abscissae [Gre67] or their generalization, the natural configura-
tion [BS88].

To classify knots, we introduce the following notation. Let p be
a knot of valency n ≥ 3 in a knot mesh and let m1, m2, . . . , mn

be multiplicities of knot lines emanating from p, ordered anti-
clockwise. Then, the type of p is described as m1�m2�. . .�mn; see
Figure 2. For instance, the type of a knot in a tensor-product sce-
nario with all knot lines single is described as 1�1�1�1. Moreover,
any knot whose incident knot lines do not correspond to a tensor-
product scenario will be called an extraordinary knot, EK for short,
and marked by a cyan square �.

Thus, Figures 2(a)–(c) show ordinary knots while Figure 2(f)
shows an EK. Note that a knot of valency 4 at which a multiple knot
line terminates is extraordinary (e.g. Figure 2 f). These considera-
tions are independent of the degree of a particular scheme, both odd
and even degrees are covered.

The simplest situation is shown in Figure 2(a), i.e. a tensor-
product structure with single knot lines. Figures 2(b) and (c) depict

a) 1 1 1 1 b) 1 2 1 2 c) 2 2 2 2

d) 1 1 1 1 1 e) 2 2 2 2 2 f) 2 1 1 1

g) 2 1 1 1 1 h) 3 2 2 1 2 i) 3 2 1 1 1 2 1

Figure 2: Some knot meshes with various levels of complexity
(multiple knot lines are depicted by lines close together): (a) the
simplest situation, (b) a tensor product situation with a double knot
line in only one direction, (c) still tensor product but with double
knot lines in both directions, (d) a conventional extraordinary knot
with single knot lines and (e) with double knot lines. In these two
cases, we can use Fourier partitioning to analyse the situation. In
the last four cases (f–i), we cannot use Fourier simplification, and
in (h) and (i) we cannot even use mirror symmetry. We emphasise
that, except for tensor product scenarios, all multiple knot lines are
truncated at the extraordinary knot, not running through it. EKs are
marked by a cyan square.

other tensor-product scenarios, this time with one and two double
knot lines, respectively.

The simplest non-trivial situation is shown in Figure 2(d). Subdi-
vision at EKs of type 1�1�. . .�1 with any valency was considered
for the first time by Catmull and Clark [CC78] and Doo and Sabin
[DS78] for degrees two and three. A generalization of these schemes
to any odd degree and non-uniform knot spacings was introduced by
Cashman [Cas10] and termed ‘NURBS-compatible subdivision’.

However, even this general framework does not handle multiple
knot lines at extraordinary knots; see Figure 2(e). This issue was
addressed previously by us [KSD13] for degree three and any va-
lency at a knot of type 2�2�. . .�2. We remark that the situations
considered so far are either trivial (Figures 2 a–c) or exhibit an
n-fold symmetry (Figures 2 d and e), which significantly simpli-
fies their investigation. We now extend this work to cover the more
challenging cases. Note that all multiple knot lines that are not in a
tensor product configuration have to terminate at the corresponding
extraordinary knot—they cannot pass through it.

C© 2013 The Authors
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a) A regular grid b) One double knot line

c) 2 1 1 1 d) 2 1 1 1

e) 2 1 1 1 f) 3 1 1 1

Figure 3: Truncated multiple knot lines for degree 3. The truncation
occurs at the knot shown in cyan in (c)–(f). Its basis function support
is shown in blue in (d). Note that for everywhere far enough to the
right in (e), the configuration becomes that of (a), far enough to the
left that of (b). A triple knot line truncation scenario is depicted in
(f). In order to emphasise the knot line structure (grey), the outer
part of the control mesh (black) is omitted.

5. Truncated Multiple Knot Lines

We start our investigation by looking at one of the simplest sce-
narios without n-fold symmetry, namely 2�1�1�1, bi-degree three;
see Figure 2(f). To approach this, consider first the tensor-product
scenario of Figure 3(a). If we let one of the horizontal knot lines
become a double knot line, we obtain the situation depicted in Fig-
ure 3(b), i.e. we still did not leave the tensor-product world. We
can understand this in terms of knot insertion and basis function
splitting.

Suppose now that we truncate the double knot line at the cyan
knot in Figure 3(c), keeping the left-hand side of the knot line
double and making the right-hand side single. If we split the basis
function corresponding to the cyan knot, due to the support of the

new vertices whose stencils are extraordinary
new vertices that depend on ghost vertices
new vertices whose stencils are tensor product
ghost vertices created by knot insertion
old control vertices

Figure 4: Colour coding of old and new control vertices appearing
in a subdivision step using stencils.

function (shown in blue in Figure 3 d), the double knot line would
propagate (in red) beyond the cyan knot. Thus, in order to truncate
the knot line at the cyan knot, its corresponding basis function must
not be split and by the same argument the same applies also to the
left neighbour of the cyan knot. This behaviour has been observed
also in the context of arbitrary degree T-splines [Fin08] and similar
T-constructions.

We thus obtain the configuration depicted in Figure 3(e) for a knot
of type 2�1�1�1, with a truncated double knot line and bi-degree
three. Figure 3(f) shows a similar situation, 3�1�1�1, this time with
a truncated triple knot line. For a general degree d , only those basis
functions whose support (with width equal to d + 1) is completely
crossed by the multiple knot line can be split and therefore only at
some offset from the extraordinary knot does an irregularity in the
control mesh appear. For odd degree d , this appears at an offset of
(d + 1)/2. This applies also to even degrees, even though their knot
mesh—control mesh correspondence is different; see Figure 5, left.
In the limit, as we subdivide, the irregularity converges on the EK;
for even degrees, an extraordinary control face converges to a point
over the EK.

In T-constructions, truncated knot lines create T-junctions. By
contrast, in our approach, we get a region where the mesh transitions
from multiple knot line to single knot line. This is shown by the black
dashed lines; see Figures 3(e) and (f).

Now that we understand the configuration of control vertices cor-
responding to the vicinity of an extraordinary knot, we can proceed
to derive subdivision rules for these control vertices.

6. Subdivision at a Knot of Type 2�1�1�1

Let us look first at the situation in the vicinity of 2�1�1�1 as
this example aids understanding of more complex scenarios. Since
our approach generalizes straightforwardly to higher degrees, we
explain it here for degrees two and three only.

In a subdivision step, we insert a knot line into the middle of every
non-zero knot interval. We use stencils to explain how we subdivide
at 2�1�1�1, as it makes the example easier to comprehend. Control
vertices are marked as shown in Figure 4.

As we see in Figure 5, the natural configuration of the black
control vertices is not tensor product due to the presence of 2�1�1�

1. Thus, stencils for some of the new control vertices do not have
a tensor product structure. For example, the new red control vertex
in Figure 6, left, cannot be computed using a tensor product stencil.
However, we can use knot insertion (Figure 6, middle) to compute
a new, yellow, control vertex, which we call a ghost control vertex.

C© 2013 The Authors
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Figure 5: Natural configurations for bi-degree 2 (left) and
bi-degree 3 (right) for 2�1�1�1: knot lines (grey), control vertices
(black) and ghost control vertices (yellow) created by knot insertion
(marked by arrows).

Figure 6: The stencil of the red control vertex; an example for
degree 2, cf. Figure 5, left. Left: the original configuration. Middle:
knot insertion introduces a ghost control vertex (yellow). Right: the
new tensor-product stencil for the red control vertex.

Figure 7: The stencil of the red control vertex; an example for
degree 3, cf. Figure 5, right. Left: the original configuration. Middle:
knot insertion introduces ghost control vertices (yellow). Right: the
new tensor-product stencil for the red control vertex.

The ghost vertex turns the local configuration into a tensor product
one. The new red control vertex is then computed using a tensor
product stencil; see Figure 6, right.

Similarly, Figure 7 depicts an analogous procedure for a new red
control vertex in the vicinity of 2�1�1�1, this time for degree 3.
Knot insertion introduces two ghost control vertices (yellow), which
then contribute to forming a tensor product stencil; see Figure 7,
right.

By this strategy, every new control vertex can be computed using
a tensor product stencil. All the required ghost control vertices
(created by knot insertion) are shown in yellow in Figure 5 for
degrees 2 and 3. Ghost control vertices are created solely for the
purpose of this subdivision step, they do not themselves appear in
the subdivided mesh.

Since only knot insertion is used to compute the ghost control
vertices, our construction works for any degree d . Observe that the
configuration of control vertices is invariant under refinement. This
means that our subdivision schemes are stationary. Armed with the
understanding of valency four scenarios, we now move on to more
complicated ones.

7. General Configurations

We now consider situations at extraordinary knots of arbitrary va-
lency, where one or several multiple knot lines terminate.

7.1. One multiple knot line at an extraordinary knot

First, we address situations when only one knot line is multiple
and all other knot lines are single. Consider the extraordinary knot
2�1�1�1�1 for degree three; see Figure 8, top. Since the EK itself
does not influence the splitting of basis functions along the double
knot line, the configuration of control vertices is analogous to that
of 2�1�1�1, cf. Figure 5, right.

Further, for example in the cubic (degree 3) case, all new control
vertices can be computed using tensor product stencils, with one
exception, the new control vertex corresponding to the EK itself
(cyan). This special control vertex can, however, be obtained in
terms of its one ring neighbourhood using the original Catmull-
Clark weights, or better, weights chosen by eigenanalysis that give
bounded curvature [ADS06; Cas10]. Stencils of these vertices will
be called extraordinary stencils.

For higher degrees, knot insertion, computation of ghost vertices
and conversion to tensor product stencils all work in the same fash-
ion as described above. The only difference is, since support width
increases with degree, that more vertices with extraordinary stencils
emerge; see the green vertices in Figure 9 for a degree five scheme.
For degree d , the green vertices form an r-ring neighbourhood of
the new extraordinary vertex or face (in the new control mesh) cor-
responding to the EK, with r = �d/2� − 1. Namely for low degrees

d 0 1 2 3 4 5 6 . . .

r −1 −1 0 0 1 1 2 . . .
; (1)

r = −1 means that there are no green vertices present. The new
positions of the green vertices are computed using Cashman’s non-
uniform refine and smooth algorithm [CADS09].

We now show that the colour assignment introduced in Figure 4 is
well defined, i.e. that no new control vertex can be simultaneously
red (depend on ghost vertices) and green (have an extraordinary
stencil). As we have already seen, the valency influences the con-
figuration of control vertices in a straightforward way. Moreover, in
situations with only one multiple knot line, the actual multiplicity
does not influence the separation of new red and green vertices.
Consequently, it is sufficient to focus only on the configuration at
2�1�1�1 for degree d .

The support width of a standard, univariate, degree d B-spline
basis function is w = d + 1. The above claim then follows from
the width of stencils for new vertex vertices (those new vertices that
correspond to old vertices) and new edge vertices (those new vertices

C© 2013 The Authors
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Figure 8: An extraordinary knot of type 2�1�1�1�1 and the
corresponding configuration of control vertices for degree three.
Bottom: a subdivision step using tensor product stencils. New
control vertices with stencils influenced by ghost control vertices
(yellow) are shown in red, the standard ones are in blue.

that correspond to the centres of old edges)—see Figure 10—and
from the fact that the centre of the last basis function split occurs
at the distance of w/2 from the extraordinary knot. Consequently,
all the new red vertices along a knot line of multiplicity m form a
rectangle of d vertices along the knot line times 3d − 5 + m vertices
across it.

For odd degree schemes, there is a column of new blue vertices
(see Figure 8, bottom, and Figure 9) separating new red and green
ones. For even degree schemes, this column is not present.

7.2. Several multiple knot lines meeting at an extraordinary
knot

We next address the question of mutual interference of multiple knot
lines along several (or all) rays at an extraordinary knot. We note

Figure 9: The distribution of new control vertices at 2�1�1�1�1
for degree 5. Notice that green and red vertices are well separated.

d 1
0 1 1
1 1 2 1
2 1 3 3 1
3 1 4 6 4 1
4 1 5 10 10 5 1
5 1 6 15 20 15 6 1

Figure 10: Pascal’s triangle and the derivation of univariate
stencils (each row must be divided by 2d ). For odd degrees, new
vertex-vertex stencils are shown in bold. Their size is equal to
2�(d + 2)/4� + 1. Even degree stencils are of size (d + 2)/2.

that the multiple knot lines are all truncated at the EK, not running
through it.

It is easy to observe that if multiple knot lines do not occur along
adjacent rays (e.g. 1�2�1�3�1), then the approach of the previous
section applies to each of the rays independently. Moreover, the
valency of an EK plays no significant role in this investigation.
Therefore, it suffices to investigate only the case of m1�m2�1�1 for
degree d .

Consider the situation of Figure 11, i.e. 3�2�1�1 for degree three.
The configuration of control vertices in the vicinity of the new red
vertex is not a tensor product one. Similarly to the approach in
Section 6, we compute ghost vertices (yellow) using knot insertion;
only this time, the knot insertion needs to act along both truncated
multiple knot lines. Nevertheless, as standard B-spline theory tells
us, the sequence in which knots are inserted does not matter and the
control vertex in dark yellow is unique for all degrees. This vertex

C© 2013 The Authors
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Figure 11: Control mesh configuration at 3�2�1�1 for degree 3.
Bright yellow vertices are computed using knot insertion in one
direction only, whereas dark yellow marks a vertex created by knot
insertion in two directions. The nine vertices contributing to the
tensor product stencil of the red vertex lie on the pink rectangle.

Figure 12: The car model of Figure 1. Due to symmetry, only
a half of the control mesh is shown. Extraordinary vertices, two
each of 3�3�3�2�1 and 2�2�3, are marked by cyan bullets. Edges
corresponding to multiple knot lines are shown in green (double)
and red (triple). From left: Original mesh with edges marked by
multiplicity and the resulting control mesh after knot insertion. New
control vertices have been moved to capture the desired shape.
Right: Two steps of cubic refinement of the control mesh.

then, along with some of the other ghost and old vertices, forms a
tensor product stencil of the new red vertex.

Our approach using knot insertion and ghost vertices generalizes
to any degree and any type of extraordinary knots. An example with
3�3�3�2�1 and 2�2�3 is shown in Figure 12, cf. Figure 1. More
examples are shown in Figures 13–15.

8. Summary of Subdivision Algorithm

Having presented our approach to subdivision with multiple knot
lines in detail in Sections 5–7, we now summarize its most important
steps:

(1) Control mesh design: The input is a degree d and a quadrilat-
eral subdivision control mesh M0 (extraordinary faces are allowed
if d is even). The user (or an automated system in case of surface
fitting with features) marks sequences of edges (or strips of faces if
d is even) by desired knot line multiplicity; see Figure 12, top left.
B-spline knot insertion then automatically introduces new control
vertices, which the user is free to modify (see Figure 12, top right),
resulting in a marked mesh N0.

(2) Topological step: Mesh N0 is subdivided topologically into N1

depending on its EKs (e.g. Figure 9). No positions are computed
at this step. Each new control vertex of N1 is assigned a colour
according to Figure 4: colour every vertex blue; colour the vertices
of the r-ring neighbourhood (1) of the new (extraordinary) vertex
or face green; colour red the vertices in the rectangular region of
size d × (3d − 5 + m) along each knot line of multiplicity m; see
Figure 9.

(3) Geometric step: Ghost control vertices are computed using
knot insertion where required by new red control vertices. Then, the
positions of new blue and red control vertices are computed using
standard tensor product degree d B-spline stencils acting onN0. The
positions of new green control vertices are computed using Cash-
man’s non-uniform refine-and-smooth algorithm [CADS09]. This
procedure assigns new positions to all control vertices of N1; see
Figure 12, bottom left. The multiplicity marking of N0 is inherited
by N1 in a straightforward fashion, analogously to subdivision with
creases [DKT98].

Repeating Steps 2 and 3 gives a stationary subdivision scheme.
The resulting limit surface has features (discontinuities) at the de-
sired places, as marked in Step 1.

9. Discussion

We now address continuity of our surfaces, bounded curvature, exact
evaluation and compare to semi-sharp creases of [DKT98].

9.1. Continuity

The standard approach to continuity analysis of subdivision schemes
is via spline rings [PR08], see Figure 16. However, our new scheme
is based on an existing one, so the continuity of that scheme ap-
plies everywhere except along the crease lines that we have added
to the surface. Our additions are explicitly designed to model sharp
creases, places at which continuity is reduced. Therefore, our con-
tinuity analysis is straightforward.

In the symmetric, unmodified case with all knot lines single
the limit surface is C1 continuous at extraordinary knots of any
valency n ≥ 3 and for degrees d ≥ 2, and Cd−1 everywhere else
[Cas10]. At a desired crease, knot insertion of a truncated knot
line raises its multiplicity to d , but does not change the surface.
Only when the user moves the newly created control points out of
their knot-inserted configuration does the continuity along the trun-
cated knot line drop to C0 and a crease is created. This crease
then fairs out into the original surface at extraordinary points.

C© 2013 The Authors
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Figure 13: A cube-corner example of 1�2�3 at degree 2. Knot line multiplicity three creates a discontinuity controlled by the vertices incident
with the blue edges of the control mesh (left). The extraordinary face is shown in cyan. Right: Gaussian curvature (discrete estimation) of the
limit surface and its reflection lines.

Figure 14: A symmetric example of 4�4�4�4�4, degree 3. Note that knot lines of multiplicity 4 allow us to create discontinuities in the
surface. Nevertheless, C1 continuity at the extraordinary knot is preserved.

Figure 15: An example of 1�3�2�1�2�3, degree 3. The extraordinary vertex is marked by a cyan bullet. Edges corresponding to multiple
knot lines are shown in green (double) and red (triple).

These points form transitions between the C0 crease and the Cd−1

continuous surface. Thus, the continuity at the extraordinary point
itself is at least C0. Our numerical verification of sufficient con-
ditions for C1 continuity for low degrees, valencies, and knot line
multiplicities (e.g. the configurations shown in Figures 16 and 17)
suggests that C1 continuity is preserved at extraordinary knots of any
type.

9.2. Bounded curvature

Tuning for bounded curvature is a useful additional feature for sub-
division schemes, previously adopted for Catmull-Clark [ADS06]
and Cashman’s method [Cas10]. Our new method is compatible with
such tuning methods. Tuning is based on multipliers that modify the
weight of an extraordinary vertex in three types of stencil:

C© 2013 The Authors
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Figure 16: A part of the spline ring for degree three at 2�1�1�3.
Control vertices influencing the dark red region are shown in orange.

Figure 17: A basis function for degree 3 with 3�1�1�1�1 (cyan)
at the boundary of its support (outlined in black).

� contributions to the extraordinary vertex itself,
� contributions to edge-connected vertices,
� contributions to face-connected vertices.

These multipliers affect only the 1-ring neighbourhood of an ex-
traordinary vertex in the new control mesh. Thus, the tuning of Cash-
man [Cas10] for bounded curvature and the tuning of Augsdörfer
[ADS06] for good curvature behaviour are both compatible with
our approach.

Two simple examples with bounded curvature tuning [Cas10] are
shown in Figure 18. Bounded curvature solutions for even degree
schemes remain a topic for future research [Cas10, Section 6.4].

9.3. Exact evaluation

An important ingredient for some applications, such as analysis, is
exact evaluation [Sta98; NLG12; NLMD12]. In the non-uniform
case, Cashman’s framework requires selective knot insertion to cre-
ate uniform regions around EKs. In our, uniform case, this stage
is not necessary and Stam’s approach [Sta98] can be applied, be-

Figure 18: Two examples with extraordinary knots. Bounded
curvature solutions of [Cas10] have been used. Top: 5�1�1�1�1,
degree 5. Bottom: 8�1�1, degree 7.

Figure 19: Sharp creases (red) and semi-sharp creases (green,
sharpness equal to two) on a car model (cf. Figure 1) created by
semi-sharp crease rules of [DKT98].

cause multiple knot lines influence the evaluation of tensor product
B-spline patches in a straightforward way. As for the EKs them-
selves, we note that truncated multiple knot lines do not alter the
limit point and limit normal stencils at EKs of any type compared to
Cashman’s scheme; see Figure 17. Thus these limit stencils can be
computed from the eigenrows (right eigenvectors) of the subdivision
matrix.

9.4. Comparison

Since our method applies to arbitrary degree subdivision, it is dif-
ficult to compare it with existing techniques, which only apply to
degrees two and three. Figure 19 shows a similar configuration to
Figure 1, using DeRose’s creases in place of our method. Because
our method automatically introduces more degrees of freedom at
the creases (Figure 1), DeRose’s method is unable to achieve the
level of control of our method. Figure 19 is therefore the closest ap-
proximation to our results. The red creases (C0 in our method) are
hard straight creases in DeRose’s method. The green creases (C1 in
our method) are C2 regions of high curvature in DeRose’s method.
Our creases fair out smoothly into C2 surface, whereas DeRose’s
creases terminate abruptly at the extraordinary points.
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10. Conclusions and Future Work

We have presented a subdivision framework which allows modelling
with sharp features. It is based on Cashman’s NURBS-compatible
subdivision framework and addresses the important questions how
to make a multiple knot line stop and how to model features without
making control vertices coalesce.

In future research, we would like to focus on the following short-
comings and extensions:

� The current minimal separation of EKs supported is at least a
tensor product basis function support width.

� Can we combine our approach with the refine and smooth algo-
rithm of Cashman [Cas10] to allow arbitrary (non-uniform) knot
intervals?

� Can we extend our framework to support knot lines of multiplic-
ity zero, e.g. 0�1�1�0�1? This would enable modelling with
‘T-junctions’ at extraordinary knots and would be a step towards
bringing T-splines and Cashman’s framework together.

� A complete n-fold symmetry can be forced by knot insertion.
We did not pursue this as it introduces unnecessarily many ghost
control vertices.

� Can we require a discontinuity (multiple knot line) to stop
abruptly at an extraordinary knot, i.e. without letting it fair out,
or let the discontinuity to run (smoothly) through it (as in tensor
product scenarios)?

� Our approach can be adapted to work for any other surface sub-
division scheme based on B-splines, e.g. [ZS01; HW11], since
basically only knot insertion is required to be supported.
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