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Abstract

We investigate univariate and bivariate binary subdivision schemes based on cubic B-splines with double knots. It
turns out that double knots change the behaviour of a uniformcubic scheme from primal to dual. We focus on the
analysis of new bivariate cubic schemes with double knots atextraordinary points. These cubic schemes produceC1

surfaces with the original Doo-Sabin weights.
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1. Introduction

Subdivision is a powerful and popular technique for generating free-form curves and surfaces with many applica-
tions in geometric modelling, multiresolution analysis, computer games, and the film industry. Since its introduction
to computer graphics by Chaikin (1974) in the univariate case and Catmull and Clark (1978) and Doo and Sabin (1978)
in the bivariate setting, it has been developed into a maturetechnology that is able to compete with other geometry
representations, including NURBS.

Subdivision based on uniform B-splines is well understood (Warren and Weimer, 2001; Peters and Reif, 2008;
Sabin, 2010). On the other hand, non-uniform bivariate schemes still pose challenges. In regular regions, one can
rely on univariate results (Cohen et al., 1980; Schaefer andGoldman, 2009) and use tensor products. However, in
extraordinary regions, the situation is more complex. One of the first to introduce bivariate non-uniform subdivision
for arbitrary topology was Sederberg et al. (1998), but for degrees two and three only and with no continuity guarantees
when multiple knots are present. Moreover, Qin and Wang (1999) showed that such non-uniform Doo-Sabin schemes
diverge in some cases. A real breakthrough came only recently (Cashman et al., 2009b) and resulted in NURBS-
compatible subdivision (Cashman et al., 2009a). Refer to the PhD dissertation of Cashman (2010) for more details.

Although the recent work on NURBS-compatible subdivision has answered many questions, the chase after a
complete superset of subdivision surfaces and NURBS continues. In particular, in extraordinary regions, Cashman’s
framework does not handle either multiple knots or even-degree schemes, and it is far from obvious how it might be
extended to cover these. Müller et al. (2006) did introducea variant of Catmull-Clark which allows for varying knot
intervals and direct evaluation of the limit surface. This work was later extended by Müller et al. (2010). However,
since these schemes recreate Catmull-Clark patches in neighbourhoods of extraordinary vertices, double knots are not
allowed to influence such regions.

These shortcomings motivated the research presented in this paper, which is to consider the behaviour of the
simplest multiple knot, the double knot, in cubic schemes.

We use uniform cubic B-splines as our starting point. The corresponding subdivision scheme is categorised as
primal, since every old vertex is mapped onto a new vertex in a subdivision step. On the other hand, it is known
that Chaikin’s scheme produces quadratic B-splines (Riesenfeld, 1975), which is an example of adual scheme, i.e.,
a scheme that maps old edges onto new edges. These two notionsgeneralise naturally to bivariate schemes, this time
considering images of old vertices and old faces.
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All schemes considered will be stationary (unless stated otherwise) and, except for a few illustrative schemes,
non-uniform in the sense that double knots will be present. Asubdivision step will consist of inserting a single knot
(Section 2) or a double knot (Section 3) into the middle of every non-zero interval (general knot insertion rules will
not be considered). Since a subdivision step consists of computing new vertices via linear combinations of old ones,
it can be described using asubdivision matrix.

Our analyses of schemes with double knots are based on the approach introduced in Doo and Sabin (1978),
i.e., using eigenanalysis of subdivision matrices and, in the bivariate case, Fourier partitioning. This will guarantee
that our schemes with double knots possess the appropriate spectrum (Peters and Reif, 2008). Moreover, in order
to showC1 smoothness, we analyse the so callednatural configurationof a scheme (Ball and Storry, 1988). This
configuration is given by the eigenvector corresponding to the subdominant eigenvalue of a subdivision matrix. In
turn, this configuration gives rise to thecharacteristic mapof a scheme, which is the limit surface obtained by applying
a scheme to its natural configuration. If this map and the spectrum satisfy certain properties, the original subdivision
scheme producesC1 surfaces (Peters and Reif, 1998).

Among other results, we show that the behaviour of a cubic uniform scheme locally changes from primal to dual
with the insertion of double knots. This applies both to univariate and bivariate scenarios. Based on this observation,
we design a bicubic scheme with all knots double, which is an odd-degree dual scheme. Due to its structure, no major
modification of the existing framework is needed. We also discuss the relation of this new scheme to degree raising
(Farin, 2002) and the possibility of adding even-degree schemes into Cashman’s NURBS-compatible subdivision
framework.

2. Single knot insertion

Consider subdivision schemes where we insert a single knot at the midpoint of every non-zero interval. We start
by looking at the univariate case, then move on to tensor product schemes and finally analyse more general situations,
namely configurations withn-fold symmetry, i.e., schemes with extraordinary faces of valencyn.

2.1. Univariate schemes

For comparison, we briefly recall uniform cubic B-splines (Fig. 1). Note that thesupport widthof the cubic B-
spline basis function, i.e., the size of its region of influence, is4. The subdivision matrix of the associated (uniform,
stationary) primal binary scheme is

1

8








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





. . .
1 6 1

4 4

1 6 1
4 4
1 6 1

. . .















. (1)

The column in bold,(1,4,6,4,1)/8, represents themaskof this scheme. The rows of the matrix arestencils(in this
case there are two of them) and each row sums to one. We call this uniform scheme, which producesC2 curves, theU
scheme. For a detailed treatment of univariate subdivisionschemes (including end conditions) refer to Sabin (2010).

We now consider the situation where one of the knots is doubled. The corresponding cubic basis functions are
shown in Fig. 2. Note that the basis functions influenced by the double knot have support width3 only.

Using a standard knot insertion algorithm (Cohen et al., 1980; Boehm, 1980) we insert a knot into the middle
of every non-zero knot interval: the double knot thus remains the only double knot. Repeating this process simply
reproduces the whole situation, but scaled down by the factor of 2. This yields a stationary scheme.
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Figure 1: Cubic B-spline basis function(s). The black points correspond to the natural configuration of the scheme.

Figure 2: Cubic basis functions close to a double knot. The black points correspond to the natural configuration of the
scheme.

Using knot insertion, one can derive that the subdivision matrix of this scheme is

1

16

































. . .
2
8
12 2
8 8
2 11 3

4 12

12 4

4 12

12 4

3 11 2
8 8
2 12

8
2

. . .

































. (2)

The part of the matrix which differs from the standard matrix(1), i.e., the part which is affected by the double knot,
is emphasized in bold. Note that the stencils (rows) still sum to1. However, unlike the uniform scheme, which has a
single mask, this modified scheme, which we will call theM scheme, is now given by5 different masks (columns).

Taking a closer look at the matrix, we see that away from the double knot, one obtains the standard primal binary
subdivision scheme based on uniform cubic B-splines (cf. Section 2.1). On the other hand, locally in the vicinity of
the double knot, it resembles a dual scheme. Examples and comparison of the schemes mentioned above are shown
in Fig. 3.

For future use, we remark that, in the case of theU scheme, the neighbourhood of each point corresponding to a
knot is influenced by5 original control points. In contrast, the same influence in theM scheme is6 control points,3
on each side, for the point corresponding to the double knot.On the other hand, first and second order behaviour of
both the schemes is the same.

Since theM scheme is based on B-splines, we know that the continuity of the limit curve is onlyC1 at the point
corresponding to the double knot. However, for illustrative purposes, we also follow the analysis used in Sabin (2010),
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a) Quadratic - uniform b) Cubic with one double knot c) Cubic -uniform

Figure 3: Original polygon (grey) and the polygon after one subdivision step (black). Markers bullet, square, and star
denote points computed using quadratic, cubic, and ‘transitional’ stencils, respectively.

Section 15.1.
The matrix that needs to be analysed here is the central blockof (2), i.e., the part of (2) that is influenced by the

double knot

1

16











2 11 3
4 12

12 4

4 12

12 4

3 11 2











. (3)

Exploiting its block diagonal structure (in bold), we find that its spectrum is
{
1, 12 ,

1
4 ,

1
4 ,

1
8 ,

1
8

}
and the corresponding

unnormalised eigencolumns (right eigenvectors) and eigenrows (left eigenvectors) are

1 1/2 1/4 1/4 1/8 1/8




















...
1
1
1
1
1
1
1
1
...









































...
−9
−6
−3
−1
1
3
6
9
...









































...
26
11
2
0
0
2
11
26
...









































...
−26
−11
−2
0
0
2
11
26
...









































...
4
1
0
0
0
0
1
4
...









































...
−4
−1
0
0
0
0
1
4
...





















1 (0, 0, 1, 1, 0, 0)
1/2 (0, 0,−1, 1, 0, 0)
1/4 (0, 1,−1,−1, 1, 0)
1/4 (0, 1,−3, 3,−1, 0)
1/8 (2,−11, 9, 9,−11, 2)
1/8 (−2, 11,−21, 21,−11, 2) .

(4)

The first eigenrow gives thelimit stencilof the scheme, i.e., the stencil for computing the limit point of the scheme
corresponding to the double knot. The second eigenrow, associated with the subdominant eigenvalue1/2, gives the
(unscaled) limit first derivative when applied to the data.

The subdominant eigencolumn gives the natural configuration of the scheme, see Fig. 2. Denoting the first four
eigencolumnsC0, C1, C2, andC3, one can check that, in contrast to the uniform case, they do not satisfy the relation
C2 = αC0 + βC2

1 for any real parametersα andβ. However, using limit stencils or the basis functions of theM
scheme one can verify thatC0, C1, andC2 generate monomials of degree zero, one, and two, respectively (Warren,
1995). In other words, the scheme can generate an arbitrary quadratic polynomial. On the other hand, sinceC3

generatesx2sgn(x), the second derivative is generically not continuous at thepoint corresponding to the double knot
and thus the scheme isC1 only.

2.2. Tensor product schemes
Consider the tensor products of the above univariate schemes, the uniform one,U , and the modified one,M. These

two schemes give three different tensor product scenarios.The one given byU × U yields the well known bicubic
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Figure 4: Left: Labelling of vertices (for any dual scheme with single or double knots). The lower index represents
the segment (quadrant whenn = 4) a vertex lies in. Right: The natural configuration of theM×M scheme.

uniform subdivision scheme. A generalisation of this scenario to arbitrary valencies leads to a family of schemes, the
first of which was introduced by Catmull and Clark (1978).

The two remaining tensor product schemes behave as the bicubic one away from irregular regions, so we will
focus only on their local behaviour under the influence of double knots.

The tensor productU ×M yields a scheme with a double knot along a line on the surface.In the vicinity of the
double knot we obtain the behaviour governed by ‘cubic timesquadratic’, cf. Section 2.1. From the tensor product
structure we can immediately conclude that the scheme is only C1 at the line corresponding to the double knot.

A similar argument applies to theM × M scheme. However, since this scenario can be easily generalised to
arbitrary valencies (just asU ×U), we devote the following section to it. This is a first step inour attempt to generalise
Cashman’s framework to multiple knots at extraordinary vertices.

2.2.1. TheM×M scheme
Taking the tensor productM×M gives a scheme with two lines of double knots meeting at the central face of

the control mesh (not a vertex as in the single-knot case). This gives the bivariate behaviour at a face of valency4
where two double-knot lines cross. It is locally governed bydual ‘quadratic times quadratic’ B-splines, yet it is not
the same as the tensor product biquadratic scheme, since thelimit functions are piecewise cubic, not quadratic.

Now we introduce notation which will apply also to the general casen ≥ 3. Let capital lettersA1,1
k , A1,2

k , . . .

denote original vertices and small lettersa1,1k , a1,2k , . . . new ones, after one subdivision step (we insert a knot in the
middle of every non-zero interval), wherek ∈ {0, . . . , n − 1} denotes thesegment(quadrant whenn = 4) of the
respective vertices, see Fig. 4. Such lower indices will be treated modulon. Using the (inverse) discrete Fourier
transform, we set

Ai,j
k =

n−1∑

ω=0

Ãi,j
ω e

2πi

n
ωk and ai,jk =

n−1∑

ω=0

ãi,jω e
2πi

n
ωk, (5)

wherei =
√
−1 is the complex unit andω is the Fourier index. In this section we focus on the case whenn = 4. We

look at more general values ofn in Section 2.3. This analysis follows that pioneered by Doo and Sabin (1978).
We use the labelling of vertices shown in Fig. 4 and stencils derived by taking the tensor product of (2) with itself.

Let u = e−
2πi

n
ω, ū = e

2πi

n
ω andλω = 18+6(u+ū)+u2+ū2

32 . Then in the Fourier domain
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256























ã1,1ω

ã1,2ω

ã2,1ω

ã2,2ω

ã1,3ω

ã3,1ω

ã2,3ω

ã3,2ω

ã3,3ω























=























256λω

48(3 + u) 48 16u

48(3 + ū) 16ū 48

144 48 48 16

12(3 + u) 132 44u 0 24 8u

12(3 + ū) 44ū 132 0 8ū 24

36 132 12 44 24 0 8

36 12 132 44 0 24 0 8

9 33 33 121 6 6 22 22 4























·























Ã1,1
ω

Ã1,2
ω

Ã2,1
ω

Ã2,2
ω

Ã1,3
ω

Ã3,1
ω

Ã2,3
ω

Ã3,2
ω

Ã3,3
ω























. (6)

Note that we include a grid of3× 3 points in each segment. This corresponds to the fact that3 points on each side
influence the neighbourhood of the point corresponding to the double knot in theM scheme (cf. Section 2.1).

The matrix has a lower block diagonal structure (with diagonal blocks in bold) and thus finding its spectrum is
essentially trivial — one block at a time. This was achieved by carefully sorting the vertices in their columns. We get
the following eigenvalues of (6)

{

λω,
1

4
,
1

8
,
1

8
,
1

16
,
1

16
,
1

32
,
1

32
,
1

64

}

. (7)

Except for the first eigenvalueλω, all values in the above set aren-fold eigenvalues. Forn = 4,

16λω = 9 + 6 cos
(πω

2

)

+ cos(πω). (8)

Looking at different Fourier indices gives the dominant eigenvalues

ω 0 1 2 3

λω 1 1
2

1
4

1
2

. (9)

Thus the complete spectrum of the original subdivision matrix for n = 4 (36× 36) reads






1,
1

2
,
1

2
,

1

4
︸︷︷︸

5×

,
1

8
︸︷︷︸

8×

,
1

16
︸︷︷︸

8×

,
1

32
︸︷︷︸

8×

,
1

64
︸︷︷︸

4×







. (10)

The eigendecomposition of the matrix (6) yields the obligatory column vector

(1, 1, 1, 1, 1, 1, 1, 1, 1)⊤ (11)

associated withλ0 = 1. We also obtain the column vector

(2, 4− 2i, 4 + 2i, 6, 7− 5i, 7 + 5i, 9− 3i, 9 + 3i, 12)⊤ (12)

and its complex conjugate associated withλ1 = 1/2 andλ3 = 1/2. The real and imaginary parts of (12) give the
natural configuration of theM×M scheme depicted in Fig. 4, right.

As was to be expected, we obtained a scheme that locally resembles the biquadratic B-spline subdivision scheme.
In fact, the left upper block (4×4, delimited by||) of the matrix (6) is exactly the same as in the single-knot biquadratic
case. Now the question is how to generalise the stencil for the new pointsa1,1k to accommodate irregular valencies as
well. We answer this question, along with the question ofC1 continuity, in the following section.
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2.3. Arbitrary valency withn-fold symmetry

Let us assume thatn double knots meet at a point corresponding to a face with valencyn in the control net. By
n-fold symmetry we mean that all these knots are double knots.All the other knots are single. This scheme will be
denotedMn.

Standard eigenanalysis, including the Fourier partitioning we used on theM ×M scheme, can be employed to
investigate this situation as well. The labelling of vertices we use is consistent with the one in the regular setting, see
Fig. 4. The lower index,k, now ranges from0 to n− 1, considered modulon.

The important fact to observe is that except for the verticesa1,1k , all the other new vertices, i.e.,ai,jk with i+ j > 2,
depend solely on the old vertices from their segment (with indexk) and up to two of their neighbouring segments
(with indicesk− 1 andk + 1). Therefore, the matrix (6) remains the same for everyn except for its first elementλω.
More precisely, the only change occurs fora1,1k ,

a1,1k =

n−1∑

l=0

αlA
1,1
l+k, (13)

whereαl are the weights for computing the new verticesa1,1k from the old onesA1,1
k . In the Fourier domain (see (5))

this becomes

ã1,1ω = Ã1,1
ω

n−1∑

l=0

αle
2πi

n
ωl. (14)

Consequently, the eigenvaluesλω for general valencyn are

λω =

n−1∑

l=0

αle
2πi

n
ωl. (15)

It only remains to choose the weightsαl. Observe that equation (15) is of the same type as (5), i.e., the sequence
of eigenvaluesλω for ω = 0 . . . n− 1 is the inverse discrete Fourier transform of the weightsαl with l = 0 . . . n− 1.
Therefore, we can prescribe any (reasonable) set of eigenvalues and compute the weightsαl associated with them
using the discrete Fourier transform. However, in order to obtain aC1 scheme with bounded curvature (Warren and
Weimer (2001); Peters and Reif (2008)), the eigenvalues must follow the pattern given by

ω 0 1 2 . . . n− 2 n− 1

λω 1 λ1 < 1 λ2
1 λω < λ2

1 λ2
1 λ1

. (16)

There are several variants that yield a well-behaved scheme; see Section 6.2 of Peters and Reif (2008) for more
details. In this paper, we use the original Doo-Sabin weights (Doo and Sabin, 1978)

αl =
δl,0
4

+
3 + 2 cos(2πl

n
)

4n
(17)

that generalise the biquadratic case to any valency. Looking at different Fourier indices gives (cf. (9))

ω 0 1 2 . . . n− 2 n− 1

λω 1 1
2

1
4 . . . 1

4
1
2

, (18)

where all the ‘middle’ eigenvalues are equal to1
4 . One can check that this choice agrees withλω whenn = 4, i.e., in

the case of theM×M scheme; cf. (9).
Combining these eigenvalues with the remaining ones, we obtain the whole spectrum of the original subdivision

matrix (9n× 9n) 





1,
1

2
,
1

2
,

1

4
︸︷︷︸

2n−3×

,
1

8
︸︷︷︸

2n×

,
1

16
︸︷︷︸

2n×

,
1

32
︸︷︷︸

2n×

,
1

64
︸︷︷︸

n×







. (19)
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P1

P2

P3

Figure 5: Three bicubic patches of one segment of the characteristic map ofMn. The patchP2 is given in terms of
the control points shown in grey.

As for theM×M scheme, we see thatMn resembles the Doo-Sabin scheme in the vicinity of an extraordinary
face. It thus comes as no surprise thatMn producesC1 surfaces. We prove this fact by using Corollary 4.1 from
Peters and Reif (1998); see Peters and Reif (2008) for a complete treatment of continuity of subdivision surfaces.

We remark that we need to include4 × 4 vertices in each segment to proveC1 continuity; see Fig. 5. As for
M ×M, the column vector associated withλ0 = 1 is a column of1s. With c = cos 2π

n
, s = sin 2π

n
, and defining

g = 6(1304c + 3255) we obtain the column vector (displayed as a matrix followingour labelling of vertices, the
element corresponding toA1,1

0 lies in the left bottom corner)

1

g







2170(4c+ 5) 186(39c+ 70) 15(459c+ 1085) g
1085(5c+ 7) 93(47c+ 105) 6(841c+ 2170) 15(459c+ 1085)
2170(c+ 2) 930(2c+ 7) 93(47c+ 105) 186(39c+ 70)

2170 2170(c+ 2) 1085(5c+ 7) 2170(4c+ 5)







+
1085is

g







8 6 3 0
5 3 0 −3
2 0 −3 −6
0 −2 −5 −8







(20)
and its complex conjugate associated withλ1 = 1/2 andλn−1 = 1/2. These give the normalised natural configuration
(Peters and Reif, 1998) of the scheme; see Fig. 6.

SinceMn is based on bicubic B-splines, each segment of its characteristic mapΨ(u, v) consists of three bicubic
patchesPi, i = 1, 2, 3; see Fig. 5. Moreover, since we employ symmetric weights,Mn is a symmetric subdivision
scheme and thus it is sufficient to inspect only one segment ofits characteristic map. We express the three patches
of the segmentΨ0(u, v) of the map with indexk = 0 in Bernstein-Bézier form. According to the above mentioned
corollary, we need to show that∂Pi

∂v
lies in the first quadrant ofC, the complex plane.

For the first patch,P1, the Bernstein-Bézier form of its derivative∂P1

∂v
(up to a positive multiple) reads





558(34c+ 35) 558(33c+ 35) 558(31c+ 35) 90(170c+ 217)
186(101c+ 105) 186(97c+ 105) 186(89c+ 105) 6(2329c+ 3255)
31(473c+ 525) 31(421c+ 525) 31(317c+ 525) 25(277c+ 651)



 + 3255is





6 6 6 6
6 6 6 6
5 5 5 5



 .

(21)
Indeed, since−1/2 ≤ c < 1 ands > 0, all the control points lie in the first quadrant ofC for all values ofn ≥ 3.
The same holds for the remaining two patchesP2 andP3 of Ψ0(u, v). Their derivatives∂P2

∂v
and∂P3

∂v
(up to a positive
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Figure 6: The natural configurations ofMn for n equal to3, 5 and6.

Figure 7: Top: An example ofM3. Bottom: An example ofM5. From left to right: The control mesh, the mesh
after one refinement step, the limit surface, and reflection lines on the limit surface. Control vertices that have been
moved with respect to their positions created by knot insertion are marked by red bullets.

multiple) are given by




90(170c+ 217) 18(739c+ 1085) 18(579c+ 1085) 90(89c+ 217)
6(2329c+ 3255) 18(633c+ 1085) 18(429c+ 1085) 18(269c+ 1085)
25(277c+ 651) 3(1341c+ 5425) 3(481c+ 5425) 15(−37c+ 1085)



+ 3255is





6 6 6 6
6 6 6 6
5 5 5 5





(22)
and




25(277c+ 651) 3(1341c+ 5425) 3(481c+ 5425) 15(−37c+ 1085)
124(−c+ 105) 372(−9c+ 35) 372(−13c+ 35) 372(−16c+ 35)
31(−317c+ 525) 93(−123c+ 175) 93(−131c+ 175) 93(−137c+ 175)



+3255is





5 5 5 5
4 4 4 4
5 5 5 5



 .

(23)
This concludes the proof ofC1 continuity of theMn scheme at (extraordinary) faces wheren double knots meet.

Even though the knot configuration is linked with the mesh structure, a control mesh forMn can be automatically
generated from a Catmull-Clark control mesh (i.e., aUn mesh) by standard B-spline knot insertion. The user thus
obtains extra degrees of freedom without losingC1 smoothness. Examples ofM3 andM5 are shown in Fig. 7.
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Figure 8: Cubic basis functions where all knots are double. The black points correspond to the natural configuration
of theD scheme.

The control meshes were created automatically from simple Catmull-Clark control meshes and only some of the new
vertices have been moved.

3. Double knot insertion

Now consider the case when every knot is doubled and a subdivision step inserts a double knot into the middle of
every non-zero knot interval. We start with a univariate scheme and then move on to its bivariate generalisation.

3.1. A univariate scheme

In this scenario where all initial knots are double (see Fig.8), it would be possible to explore the insertion of single
knots, but this would rapidly simplify to multiple disjointinstances of the previous caseM. We therefore explore
the more interesting case where the inserted knots are also double, thus retaining the all-knots-double structure. This
gives a stationary scheme we denoteD. Moreover, as discussed in Section 4, it is closely related to degree-raising.

One can show that the corresponding subdivision matrix thatneeds to be analysed reads

1

8











1 5 2
2 5 1

6 2

2 6

1 5 2

2 5 1











. (24)

Again, exploiting its block diagonal structure (in bold), we find that its eigendecomposition is

1 1/2 1/4 1/4 1/8 1/8




















...
1
1
1
1
1
1
1
1
...









































...
−5
−4
−2
−1
1
2
4
5
...









































...
8
5
1
0
0
1
5
8
...









































...
−8
−5
−1
0
0
1
5
8
...









































...
2
1
0
0
0
0
1
2
...









































...
−2
−1
0
0
0
0
1
2
...





















1 (0, 0, 1, 1, 0, 0)
1/2 (0, 0,−1, 1, 0, 0)
1/4 (0, 1,−1,−1, 1, 0)
1/4 (0, 1,−2, 2,−1, 0)
1/8 (1,−5, 4, 4,−5, 1)
1/8 (−1, 5,−6, 6,−5, 1) .

(25)

The subdominant eigencolumn gives the natural configuration of the scheme; see Fig. 8. Since this scheme is
based on B-splines, we know that it producesC1 curves. The above eigendecomposition confirms this.
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P1

P2

P3

Figure 9: Three bicubic patches of one segment of the characteristic map ofDn. The patchP2 is given in terms of
the control points shown in grey.

3.2. Tensor product: theD ×D scheme

The analysis of theD × D scheme, and its generalisation to arbitrary valencies, shares a lot of features with the
bivariate schemes based onM. We use the same notation and labelling as in the previous section.

However, one of the most important differences from the Doo-Sabin andM×M schemes is that not onlya1,1k ,
but alsoa1,2k , a2,1k anda2,2k depend onall the oldA1,1 points. From the stencils of the univariate schemeD it follows
that

64a1,1k = 12A1,1
k−1 + 36A1,1

k + 12A1,1
k+1 + 4A1,1

k+2,

64a1,2k = 10A1,1
k−1 + 30A1,1

k + 6A1,1
k+1 + 2A1,1

k+2 + 12A1,2
k + 4A2,1

k−1,

64a2,1k = 6A1,1
k−1 + 30A1,1

k + 10A1,1
k+1 + 2A1,1

k+2 + 4A1,2
k+1 + 12A2,1

k ,

64a2,2k = 5A1,1
k−1 + 25A1,1

k + 5A1,1
k+1 +A1,1

k+2 + 10A2,1
k + 2A2,1

k+1 + 10A1,2
k + 2A1,2

k−1 + 4A2,2
k .

(26)

Now we observe that the newa1,2k , a2,1k anda2,2k can be expressed in terms ofa1,1k and old vertices from segments
with indexk and the two neighbouring segments with indicesk − 1 andk + 1 only:

64a1,2k = 32a1,1k + 4A1,1
k−1 + 12A1,1

k + 12B1,2
k + 4A2,1

k−1,

64a2,1k = 32a1,1k + 12A1,1
k + 4A1,1

k+1 + 4A1,2
k+1 + 12A2,1

k ,

64a2,2k = 16a1,1k + 2A1,1
k−1 + 16A1,1

k + 2A1,1
k+1 + 10A1,2

k + 2A1,2
k+1 + 10A2,1

k + 2A2,1
k−1 + 4A2,2

k .

(27)

Consequently, when passing fromn = 4 to general valency, we only need to adjust the weights fora1,1k , the other
new vertices then follow from (27) or are not affected at all (verticesai,jk with i > 2 or j > 2). Therefore, we do not
discuss the casen = 4 separately.

3.3. Arbitrary valency withn-fold symmetry

We denoteDn the generalisation of the tensor product schemeD × D to valencyn. Using the same approach as
in Section 2.3 with the same labelling and order of vertices as in matrix (6), one can derive that the subdivision matrix
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Figure 10: The natural configurations ofDn for n equal to3, 4 and5.

of Dn in the Fourier domain reads

1

64























64λω

32λω + 12 + 4u 12 4u

32λω + 12 + 4ū 4ū 12

16λω + 16 + 2(u+ ū) 10 + 2ū 10 + 2u 4

12 + 4u 30 10u 0 6 2u

12 + 4ū 10ū 30 0 2ū 6

10 + 2u 25 4 + 5u 10 5 u 2

10 + 2ū 4 + 5ū 25 10 ū 5 0 2

4 10 10 25 2 2 5 5 1























. (28)

Comparing this matrix with the subdivision matrix (6), we see that it has the same blocks on its diagonal. Thus, if
we use the Doo-Sabin weights (17) yet again, the spectrum of the original subdivision matrix becomes







1,
1

2
,
1

2
,

1

4
︸︷︷︸

2n−3×

,
1

8
︸︷︷︸

2n×

,
1

16
︸︷︷︸

2n×

,
1

32
︸︷︷︸

2n×

,
1

64
︸︷︷︸

n×







. (29)

Since all the knots in this scheme are double knots, we need toconsider5× 5 vertices in each segment in order to
obtain the characteristic map; see Fig. 9.

With u = e−
2πi

n
ω as before and definingh = 2(3086c+ 7595) we obtain the normalised column vector (again,

displayed as a matrix with the element corresponding toA1,1
0 lying in the left bottom corner)

1

h









2170(3c+ 4) 31(191c+ 315) 5441c+ 11935 30(185c+ 434) h
2170(2c+ 3) 31(127c+ 245) 3(1321c+ 3255) 2(2196c+ 5425) 30(185c+ 434)
1085(3c+ 5) 186(16c+ 35) 10(333c+ 868) 3(1321c+ 3255) 5441c+ 11935
1085(c+ 3) 310(5c+ 14) 186(16c+ 35) 31(127c+ 245) 31(191c+ 315)

2170 1085(c+ 3) 1085(3c+ 5) 2170(2c+ 3) 2170(3c+ 4)









+
is

h









6 5 3 2 0
4 3 1 0 −2
3 2 0 −1 −3
1 0 −2 −3 −5
0 −1 −3 −4 −6









(30)

12



⇐⇒

a) dual b) dual c) primal

Figure 11: Degree raising and knot insertion: a) to b) via degree raising, c) to b) via doubling every knot.

and its complex conjugate associated withλ1 = 1/2 andλn−1 = 1/2. These give the natural configuration of the
scheme; see Fig. 10.

By inspecting the characteristic map ofDn via the three bicubic patches depicted in Fig. 9 as we did in the case of
theMn scheme (see Section 2.3), one can show that the map is regularand injective. This proves that theDn scheme
producesC1 surfaces for any value of the valencyn ≥ 3.

4. Conclusions and future work

We have investigated binary subdivision schemes derived from cubic B-splines with double knots. Based on
results from the univariate case, we presented and analysedtwo subdivision scenarios: theMn scheme using single
knot insertion, wheren double knots meet at (extraordinary) faces, and theDn scheme, where all knots are double
and double knot insertion is used. We showed that, with the choice of the original Doo-Sabin weights, both these
schemes produceC1 surfaces. We also pointed out that, whereas the original uniform (bi)cubic scheme is primal, the
new schemes exhibit dual behaviour in the vicinity of doubleknots; see Fig. 11.

These results partially address some of the current limitations of Cashman’s NURBS-compatible subdivision
framework and open possibilities for further investigation.

Now we present several directions for further research in the areas of subdivision with multiple knots and NURBS-
compatible subdivision.

• Higher degrees

The subdivision matrices of bothMn andDn have the same diagonal blocks as the Doo-Sabin scheme. Thus,
for an odd degreed ≥ 5 scheme with double knots, we conjecture that its subdivision matrix has the same
diagonal blocks as the uniform scheme with all knots single at degreed − 1. This would mean that we could
use the same weights as in the uniform schemes of degreed− 1.

Starting the same process with degree four B-splines may yield a well behavedC1 scheme with double (or even
triple) knots, this time with Catmull-Clark weights (Catmull and Clark, 1978)p. Also, it is reasonable to expect
that higher order schemes of degreed with knots of multiplicity up tod − 1 will produceC1 surfaces as well.
These considerations are closely related to degree six schemes with quadruple knots generatingC2 surfaces
(Reif, 1995; Prautzsch, 1997).

• Dual schemes

Consider a bivariate, even-degree schemeS all of whose knots are single, i.e., an even-degree dual scheme. The
following steps describe a potential algorithm for includingS among odd-degree schemes by degree raising.

– Raise the degree ofS by one to obtain a dual odd-degree scheme with extraordinaryfaces. This comprises
doubling all knots and computing new vertices by degree raising; see Fig. 11.
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– A subdivision step consists of inserting a double knot into every non-zero knot interval.

– Optionally, after a desired number of iterations remove alldouble knots by reducing the degree by one.

The open questions here are: how to insert and remove double knots in extraordinary regions (degree raising
and reduction) and how to handle such regions themselves in terms of weights.

• Asymmetric configurations

What about a point where just one double knot comes in along a ray? In such a scenario one can look at the
4-valent case first, as each valency will probably need looking at individually. The Fourier partitioning will
not work in this case, but general eigenanalysis should still be applicable, exploiting one reflectional symmetry.
Asymmetric configurations also include scenarios where knots with various multiplicities meet.

Acknowledgement.The authors thank EPSRC for supporting this work through grant EP/H030115/1 and the anony-
mous reviewers for their helpful insights.
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