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Abstract

We investigate univariate and bivariate binary subdivisschemes based on cubic B-splines with double knots. It
turns out that double knots change the behaviour of a unifarnic scheme from primal to dual. We focus on the
analysis of new bivariate cubic schemes with double knogxtmaordinary points. These cubic schemes prodiice
surfaces with the original Doo-Sabin weights.
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1. Introduction

Subdivision is a powerful and popular technique for geneggtee-form curves and surfaces with many applica-
tions in geometric modelling, multiresolution analysisimgputer games, and the film industry. Since its introduction
to computer graphics by Chaikin (1974) in the univariateaasd Catmull and Clark (1978) and Doo and Sabin (1978)
in the bivariate setting, it has been developed into a maaatenology that is able to compete with other geometry
representations, including NURBS.

Subdivision based on uniform B-splines is well understoddrfen and Weimer, 2001; Peters and Reif, 2008;
Sabin, 2010). On the other hand, non-uniform bivariate sE®estill pose challenges. In regular regions, one can
rely on univariate results (Cohen et al., 1980; Schaefer@oldman, 2009) and use tensor products. However, in
extraordinary regions, the situation is more complex. Otb@first to introduce bivariate non-uniform subdivision
for arbitrary topology was Sederberg et al. (1998), but &grees two and three only and with no continuity guarantees
when multiple knots are present. Moreover, Qin and Wang¥198owed that such non-uniform Doo-Sabin schemes
diverge in some cases. A real breakthrough came only rgcé@dshman et al., 2009b) and resulted in NURBS-
compatible subdivision (Cashman et al., 2009a). Referdd’thD dissertation of Cashman (2010) for more detalils.

Although the recent work on NURBS-compatible subdivisi@s lanswered many questions, the chase after a
complete superset of subdivision surfaces and NURBS aagginin particular, in extraordinary regions, Cashman’s
framework does not handle either multiple knots or everrelegchemes, and it is far from obvious how it might be
extended to cover these. Muller et al. (2006) did introdaie@riant of Catmull-Clark which allows for varying knot
intervals and direct evaluation of the limit surface. Thisrkwwas later extended by Miller et al. (2010). However,
since these schemes recreate Catmull-Clark patches inbaighoods of extraordinary vertices, double knots are not
allowed to influence such regions.

These shortcomings motivated the research presentedsimpdapier, which is to consider the behaviour of the
simplest multiple knot, the double knot, in cubic schemes.

We use uniform cubic B-splines as our starting point. Theesponding subdivision scheme is categorised as
primal, since every old vertex is mapped onto a new vertex in a sididivstep. On the other hand, it is known
that Chaikin’s scheme produces quadratic B-splines (Rfets 1975), which is an example ofdmal scheme, i.e.,

a scheme that maps old edges onto new edges. These two rggineralise naturally to bivariate schemes, this time
considering images of old vertices and old faces.
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All schemes considered will be stationary (unless statedratise) and, except for a few illustrative schemes,
non-uniform in the sense that double knots will be presergulddivision step will consist of inserting a single knot
(Section 2) or a double knot (Section 3) into the middle ofrgven-zero interval (general knot insertion rules will
not be considered). Since a subdivision step consists opating new vertices via linear combinations of old ones,
it can be described usingsaibdivision matrix

Our analyses of schemes with double knots are based on theaappintroduced in Doo and Sabin (1978),
i.e., using eigenanalysis of subdivision matrices andhélivariate case, Fourier partitioning. This will guassnt
that our schemes with double knots possess the approppettrsm (Peters and Reif, 2008). Moreover, in order
to showC! smoothness, we analyse the so caliedural configurationof a scheme (Ball and Storry, 1988). This
configuration is given by the eigenvector correspondindghéosubdominant eigenvalue of a subdivision matrix. In
turn, this configuration gives rise to tharacteristic mapf a scheme, which is the limit surface obtained by applying
a scheme to its natural configuration. If this map and thetspecsatisfy certain properties, the original subdivision
scheme produceS! surfaces (Peters and Reif, 1998).

Among other results, we show that the behaviour of a cubifoumischeme locally changes from primal to dual
with the insertion of double knots. This applies both to aniate and bivariate scenarios. Based on this observation,
we design a bicubic scheme with all knots double, which isdrdegree dual scheme. Due to its structure, no major
modification of the existing framework is needed. We alsausis the relation of this new scheme to degree raising
(Farin, 2002) and the possibility of adding even-degreesws into Cashman’s NURBS-compatible subdivision
framework.

2. Single knot insertion

Consider subdivision schemes where we insert a single krtbeanidpoint of every non-zero interval. We start
by looking at the univariate case, then move on to tensonjmtsthemes and finally analyse more general situations,
namely configurations with-fold symmetry, i.e., schemes with extraordinary facesadémcyn.

2.1. Univariate schemes

For comparison, we briefly recall uniform cubic B-splinegg(FL). Note that thesupport widthof the cubic B-
spline basis function, i.e., the size of its region of inflognis4. The subdivision matrix of the associated (uniform,
stationary) primal binary scheme is

= o

(1)

O R
DD~ =

The columnin bold(1,4,6,4,1)/8, represents thmaskof this scheme. The rows of the matrix atencils(in this
case there are two of them) and each row sums to one. We calirttfiorm scheme, which produc€é curves, thé/
scheme. For a detailed treatment of univariate subdivisitiemes (including end conditions) refer to Sabin (2010).

We now consider the situation where one of the knots is daublée corresponding cubic basis functions are
shown in Fig. 2. Note that the basis functions influenced bydibuble knot have support widshonly.

Using a standard knot insertion algorithm (Cohen et al.,01®8ehm, 1980) we insert a knot into the middle
of every non-zero knot interval: the double knot thus remsalre only double knot. Repeating this process simply
reproduces the whole situation, but scaled down by the faft®. This yields a stationary scheme.



Figure 2: Cubic basis functions close to a double knot. Thekbpoints correspond to the natural configuration of the
scheme.

Using knot insertion, one can derive that the subdivisiotrixaf this scheme is

2
8
12 2
8 8
2 11 3
4 12
1 12 4
16 4 12 ' (2)
12 4
3 11 2
8 8
2 12
8
2

The part of the matrix which differs from the standard madi i.e., the part which is affected by the double knot,
is emphasized in bold. Note that the stencils (rows) stithda 1. However, unlike the uniform scheme, which has a
single mask, this modified scheme, which we will call thescheme, is now given bydifferent masks (columns).

Taking a closer look at the matrix, we see that away from theébtioknot, one obtains the standard primal binary
subdivision scheme based on uniform cubic B-splines (ctti&e 2.1). On the other hand, locally in the vicinity of
the double knot, it resembles a dual scheme. Examples anpar@on of the schemes mentioned above are shown
in Fig. 3.

For future use, we remark that, in the case oftithecheme, the neighbourhood of each point corresponding to a
knot is influenced by original control points. In contrast, the same influencéett scheme i$ control points3
on each side, for the point corresponding to the double kbatthe other hand, first and second order behaviour of
both the schemes is the same.

Since theM scheme is based on B-splines, we know that the continuityefitnit curve is onlyC! at the point
corresponding to the double knot. However, for illustrafurposes, we also follow the analysis used in Sabin (2010),
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a) Quadratic - uniform b) Cubic with one double knot ¢) Cubimiform

Figure 3: Original polygon (grey) and the polygon after onbdivision step (black). Markers bullet, square, and star
denote points computed using quadratic, cubic, and ‘tiansi’ stencils, respectively.

Section 15.1.
The matrix that needs to be analysed here is the central bio), i.e., the part of (2) that is influenced by the
double knot

2 11 3
4 12
1 12 4
16 4 12 ' (3)
12 4
3 11 2
Exploiting its block diagonal structure (in bold), we findattits spectrumig 1,1, 1, 1, £, 3 } and the corresponding
unnormalised eigencolumns (right eigenvectors) and eayen(left eigenvectors) are
1 1/2 1/4 1/4 1/8 1/8
1 -9 2 ~26 4 4 . (070,171,0 0
1 —6 11 —11 1 -1
1/2 (070, :0,0)
1 -3 2 -2 0 0
1/4 (0,1, 71, )
1 ~1 0 0 0 0 (4)
1 1 0 0 0 0 1/4 (0,1, ~1,0)
1 3 9 9 0 0 1/8 (2,—11, 9 9 —11,2)
1 6 11 11 1 1 1/8 (=2,11,— 21,21 —11,2).
1 9 26 26 4 4

The first eigenrow gives thiémit stencil of the scheme, i.e., the stencil for computing the limit paihthe scheme
corresponding to the double knot. The second eigenrowcided with the subdominant eigenvalug, gives the
(unscaled) limit first derivative when applied to the data.

The subdominant eigencolumn gives the natural configuratfdhe scheme, see Fig. 2. Denoting the first four
eigencolumng’y, C1, Cy, andCs, one can check that, in contrast to the uniform case, theyotieatisfy the relation
Cy = aCy + BC? for any real parameters and 3. However, using limit stencils or the basis functions of the
scheme one can verify thél, C, andC> generate monomials of degree zero, one, and two, resplgdtivarren,
1995). In other words, the scheme can generate an arbittagrgtic polynomial. On the other hand, sinCe
generates?sgn(z), the second derivative is generically not continuous aptiat corresponding to the double knot
and thus the schemeds' only.

2.2. Tensor product schemes
Consider the tensor products of the above univariate schgheeuniform ond/, and the modified one\1. These
two schemes give three different tensor product scenafibs.one given by/ x U yields the well known bicubic
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Figure 4: Left: Labelling of vertices (for any dual schemehagingle or double knots). The lower index represents
the segment (quadrant when= 4) a vertex lies in. Right: The natural configuration of thé x M scheme.

uniform subdivision scheme. A generalisation of this scierta arbitrary valencies leads to a family of schemes, the
first of which was introduced by Catmull and Clark (1978).

The two remaining tensor product schemes behave as theibionb away from irregular regions, so we will
focus only on their local behaviour under the influence oftdeknots.

The tensor produéf x M yields a scheme with a double knot along a line on the surfiacthe vicinity of the
double knot we obtain the behaviour governed by ‘cubic tiopeadratic’, cf. Section 2.1. From the tensor product
structure we can immediately conclude that the scheme ys@hht the line corresponding to the double knot.

A similar argument applies to th&! x M scheme. However, since this scenario can be easily gesetdt
arbitrary valencies (just d# x U{), we devote the following section to it. This is a first stepur attempt to generalise
Cashman'’s framework to multiple knots at extraordinaryiges.

2.2.1. TheM x M scheme

Taking the tensor produg¥t x M gives a scheme with two lines of double knots meeting at thérakface of
the control mesh (not a vertex as in the single-knot caseijs Jikes the bivariate behaviour at a face of valeticy
where two double-knot lines cross. It is locally governeddional ‘quadratic times quadratic’ B-splines, yet it is not
the same as the tensor product biquadratic scheme, sinimthiinctions are piecewise cubic, not quadratic.

Now we introduce notation which will apply also to the geneasen > 3. Let capital lettersd,’', A%, ...
denote original vertices and small Iett@@l, a,lc"z, ... hew ones, after one subdivision step (we insert a knot in the
middle of every non-zero interval), whektee {0,...,n — 1} denotes thesegmen{quadrant whem = 4) of the
respective vertices, see Fig. 4. Such lower indices willrbated modula. Using the (inverse) discrete Fourier
transform, we set

n—1 n—1
. . omi - s 2w, g
Ay = E Abie ek and a)? = g abe @k, (5)
w=0 w=0

wherei = v/—1 is the complex unit and is the Fourier index. In this section we focus on the case whemnd. We
look at more general values afin Section 2.3. This analysis follows that pioneered by Dod Sabin (1978).
We use the labelling of vertices shown in Fig. 4 and sten@fé/éd by taking the tensor product of (2) with itself.

i i i 24 52 . . .
Letu=e 7% a=cn%and\, = W Then in the Fourier domain



att 256\,
al? 48(3+wu) | 48 16u
at 48(3+w) | 160 48
az? 144 48 48 | 16
256 | al® [ = 123+4w) | 132 44u | O || 24 8u
at 12(3+a) | 44u 132 | O || 84 24
a3 36 132 12 | 44 || 24 0 | 8
az? 36 12 132 | 44 | 0 24| 0 | 8
a3 9 33 33 | 121 6 6 |22|22]4

(6)

Note that we include a grid ¢f x 3 points in each segment. This corresponds to the facBtpaints on each side

influence the neighbourhood of the point correspondingedaltiuble knot in the\i scheme (cf. Section 2.1).

The matrix has a lower block diagonal structure (with diagjdsiocks in bold) and thus finding its spectrum is
essentially trivial — one block at a time. This was achieved#refully sorting the vertices in their columns. We get

the following eigenvalues of (6)

N I I
“7478787167167327 32764 |

Except for the first eigenvalug,, all values in the above set atiefold eigenvalues. For = 4,

16, = 9+ 6 cos (%) + cos(mw).

Looking at different Fourier indices gives the dominanegigalues

Thus the complete spectrum of the original subdivision imédr n = 4 (36 x 36) reads

L Ll I )
= o

1 1 1

1 1
47 8 716 32 64
N
5% 8X 8X 8X 4x

1
727

The eigendecomposition of the matrix (6) yields the obbigatolumn vector
(1,1,1,1,1,1,1,1,1)"
associated withg = 1. We also obtain the column vector

(2,4 —2i,4+2i,6,7— 51,7+ 51,9 — 31,9+ 3i,12)"

(7)

(8)

(9)

(10)

(11)

(12)

and its complex conjugate associated with= 1/2 and 3 = 1/2. The real and imaginary parts of (12) give the

natural configuration of tha1 x M scheme depicted in Fig. 4, right.

As was to be expected, we obtained a scheme that locally Bssithe biquadratic B-spline subdivision scheme.
In fact, the left upper blocki(x 4, delimited by||) of the matrix (6) is exactly the same as in the single-kngubtratic
case. Now the question is how to generalise the stencil énéw points;,lc’1 to accommodate irregular valencies as
well. We answer this question, along with the questio’éfcontinuity, in the following section.
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2.3. Arbitrary valency witm-fold symmetry

Let us assume that double knots meet at a point corresponding to a face withnegle in the control net. By
n-fold symmetry we mean that all these knots are double knfdtghe other knots are single. This scheme will be
denotedM,,.

Standard eigenanalysis, including the Fourier partitignive used on thé1 x M scheme, can be employed to
investigate this situation as well. The labelling of vezSave use is consistent with the one in the regular settirg, se
Fig. 4. The lower indexk, now ranges frond ton — 1, considered module. N

The important fact to observe is that except for the vernix,ﬁés all the other new vertices, i.e,” with i+ 5 > 2,
depend solely on the old vertices from their segment (witleitk) and up to two of their neighbouring segments
(with indicesk — 1 andk + 1). Therefore, the matrix (6) remains the same for eveexcept for its first element,,.
More precisely, the only change occurs fgr',

n—1
ayt = AL, (13)
=0

whereq, are the weights for computing the new vertiegs from the old onest,’'. In the Fourier domain (see (5))
this becomes

n—1

~1,1 _ F1,1 27 )]

a,;  =A, E ae n @, (14)
1=0

Consequently, the eigenvaluks for general valency, are

n—1
A = Z alezgl“’l. (15)
1=0

It only remains to choose the weights. Observe that equation (15) is of the same type as (5),he sequence
of eigenvalues\, forw = 0...n — 1is the inverse discrete Fourier transform of the weightaithl =0...n — 1.
Therefore, we can prescribe any (reasonable) set of eiyms/and compute the weights associated with them
using the discrete Fourier transform. However, in orderttaim aC'* scheme with bounded curvature (Warren and
Weimer (2001); Peters and Reif (2008)), the eigenvalues fallaw the pattern given by

ww(l)\ 1 \2\ ‘n—Q‘n—ll 16)

Ao <t X[ an<n| 8 [

There are several variants that yield a well-behaved scheeee Section 6.2 of Peters and Reif (2008) for more
details. In this paper, we use the original Doo-Sabin wei¢bbo and Sabin, 1978)

1) 3 + 2 cos( 2zt
:ﬂ_i_ (”>

M=y in (17
that generalise the biquadratic case to any valency. Lgakilifferent Fourier indices gives (cf. (9))
w - n — n —
Jofif2]|. |[n-2]n-1
; (18)
IR N

where all the ‘middle’ eigenvalues are equal}ItoOne can check that this choice agrees withwhenn = 4, i.e., in
the case of the\l x M scheme; cf. (9).

Combining these eigenvalues with the remaining ones, wambie whole spectrum of the original subdivision
matrix On x 9n)

11 1 1 1 1 1
1) 5790 T 9 Y A4 90 ) ag (19)
2°2° 4 8 " 16 " 32 64
~
2n—3X 2n 2nX 2nXxX nX



Figure 5: Three bicubic patches of one segment of the cleaistat map ofM,,. The patchP; is given in terms of
the control points shown in grey.

As for the M x M scheme, we see thatl,, resembles the Doo-Sabin scheme in the vicinity of an extiaary
face. It thus comes as no surprise thdt, producesC! surfaces. We prove this fact by using Corollary 4.1 from
Peters and Reif (1998); see Peters and Reif (2008) for a aempeatment of continuity of subdivision surfaces.

We remark that we need to includex 4 vertices in each segment to progé continuity; see Fig. 5. As for
M x M, the column vector associated with = 1 is a column ofls. With ¢ = cos %’T s = sin 27“ and defining

g = 6(1304c¢ + 3255) we obtain the column vector (displayed as a matrix followng labelling of vertices, the
element corresponding té)é’l lies in the left bottom corner)

2170(4c+5) 186(39¢ + 70)  15(459¢ + 1085) g 8 6 3 0
1| 1085(5c+7) 93(47c+105) 6(841c+2170) 15(459¢ + 1085) 1085is [ 5 3 0 -3
g | 2170(c+2)  930(2c+7)  93(4Tc+105)  186(39c+70) | T g4 2 0 -3 —6
2170 2170(c+2)  1085(5¢+7) 2170(4e + 5) 0 -2 -5 -8

(20)

and its complex conjugate associated with= 1/2 and\,,_1 = 1/2. These give the normalised natural configuration
(Peters and Reif, 1998) of the scheme; see Fig. 6.

SinceM,, is based on bicubic B-splines, each segment of its charstitenap ¥ (u, v) consists of three bicubic
patchesP;, i = 1,2, 3; see Fig. 5. Moreover, since we employ symmetric weights, is a symmetric subdivision
scheme and thus it is sufficient to inspect only one segmeit$ characteristic map. We express the three patches
of the segmen¥(u, v) of the map with indext = 0 in Bernstein-Bézier form. According to the above mentibne
corollary, we need to show th%’% lies in the first quadrant of, the complex plane.

For the first patchP;, the Bernstein-Bézier form of its derivati\fg'} (up to a positive multiple) reads

558(34c+35)  558(33c+35)  558(3lc+35)  90(170c + 217) 6
186(101c+ 105) 186(97c + 105) 186(89c+ 105) 6(2329¢ + 3255) | + 3255is [ 6
31(473c+525)  31(421c+ 525) 31(317c+525) 25(277c+ 651) 5

oo O
T o O
(V2 S e e))

(21)
Indeed, since-1/2 < ¢ < 1 ands > 0, all the control points lie in the first quadrant ©ffor all values ofn > 3.
The same holds for the remaining two patciesnd P; of ¥ (u,v). Their derivative% and% (up to a positive
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Figure 7: Top: An example aM 3. Bottom: An example oM. From left to right: The control mesh, the mesh
after one refinement step, the limit surface, and reflectimeslon the limit surface. Control vertices that have been
moved with respect to their positions created by knot immerre marked by red bullets.

multiple) are given by

90(170c¢ + 217)  18(739¢+ 1085) 18(579¢+ 1085)  90(89c¢ + 217) 6 6 6 6

6(2329¢ + 3255) 18(633c+ 1085) 18(429¢+ 1085) 18(269¢ + 1085) +3255is| 6 6 6 6

25(277c+651)  3(1341c+ 5425) 3(481c+ 5425) 15(—37c+ 1085) 5 5 5 5
(22)

and

25(277c+651)  3(1341c+ 5425)  3(481c+ 5425)  15(—37c+ 1085) 5 5 5 5

124(—c+ 105) 372(—=9c + 35) 372(—13c+35)  372(—16¢+ 35) +3255is | 4 4 4 4

31(—=317¢+525) 93(—123c+175) 93(—131c+ 175) 93(—137c+ 175) 5 5 5 5
(23)

This concludes the proof @f! continuity of theM,, scheme at (extraordinary) faces wherdouble knots meet.

Even though the knot configuration is linked with the meshdtrre, a control mesh fo¥1,, can be automatically
generated from a Catmull-Clark control mesh (i.elf,amesh) by standard B-spline knot insertion. The user thus
obtains extra degrees of freedom without losifiy smoothness. Examples @f(3 and M are shown in Fig. 7.
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Figure 8: Cubic basis functions where all knots are doubkee Black points correspond to the natural configuration
of the D scheme.

The control meshes were created automatically from simpten@ll-Clark control meshes and only some of the new
vertices have been moved.

3. Double knot insertion

Now consider the case when every knot is doubled and a sshativétep inserts a double knot into the middle of
every non-zero knot interval. We start with a univariatessobk and then move on to its bivariate generalisation.

3.1. A univariate scheme

In this scenario where all initial knots are double (see 8)git would be possible to explore the insertion of single
knots, but this would rapidly simplify to multiple disjoimistances of the previous cadd. We therefore explore
the more interesting case where the inserted knots are aldae] thus retaining the all-knots-double structure sThi
gives a stationary scheme we denbteMoreover, as discussed in Section 4, it is closely relatatbgree-raising.

One can show that the corresponding subdivision matrixrteatls to be analysed reads

1 5 2
2 5 1
1 6 2
8 2 6 (24)
1 5 2
2 5 1
Again, exploiting its block diagonal structure (in bold)eviind that its eigendecomposition is
1 1/2 1/4 1/4 1/8 1/8
! =9 8 -8 2 -2 1 (0,0,1,1,0,0)
1 —4 5 -5 1 -1
/2 (0,0,-1,1,0,0)
1 -2 1 —1 0 0
/4 (0,1,-1,— ,1,0)
1 -1 0 0 0 0 (25)
1/4  (0,1,-2,2,—1,0)
1 1 0 0 0 0
1/8 (, —5,4,4,-5,1)
! 2 L L 0 0 1/8 (=1,5,-6,6,—5,1).
1 4 5 ) 1 1 o
1 5 8 8 2 2

The subdominant eigencolumn gives the natural configuratfdhe scheme; see Fig. 8. Since this scheme is
based on B-splines, we know that it produc&scurves. The above eigendecomposition confirms this.
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Figure 9: Three bicubic patches of one segment of the cleaistit map ofD,,. The patchPs is given in terms of
the control points shown in grey.

3.2. Tensor product: th® x D scheme

The analysis of th&® x D scheme, and its generalisation to arbitrary valenciesestalot of features with the
bivariate schemes based an. We use the same notation and labelling as in the previoti®sec

However, one of the most important differences from the Sadin and\ x M schemes is that not onby ",
but alsoa,*, a;'' anda;”® depend orall the old A™! points. From the stencils of the univariate schefni¢ follows

that

64a,’ = 1247 + 364" + 124 + 44,0,

64a;° = 104", + 304" + 64,0 + 240, + 12407 + 447" (26)
64a;" = 6Ap, +304." + 104, + 2400, + 447 + 1247

64a;® = 5A + 2540 +5A + Apl, + 1040 + 2401 + 104,77 + 24,7 + 4477,

Now we observe that the new*, a;"' anda;* can be expressed in terms@f" and old vertices from segments
with indexk and the two neighbouring segments with indi¢es 1 andk + 1 only:

6day® = 32a;" +4A; + 1240 +12B° + 447
6da;’ = 32a;' + 124" +4AL], +4AT + 1240, (27)
64ay® = 16a;" + 240 + 164" + 240, + 104,° + 24,7 + 10477 + 247" + 4472

Consequently, when passing fram= 4 to general valency, we only need to adjust the Weightmto’r, the other

new vertices then follow from (27) or are not affected at\zdzlr(iceSaZj with ¢ > 2 orj > 2). Therefore, we do not
discuss the case = 4 separately.

3.3. Arbitrary valency witm-fold symmetry

We denoteD,, the generalisation of the tensor product sché&me D to valencyn. Using the same approach as
in Section 2.3 with the same labelling and order of verticemanatrix (6), one can derive that the subdivision matrix

11



Figure 10: The natural configurations Bf, for n equal to3, 4 and5.

of D,, in the Fourier domain reads

64\,
32X\, + 12 + 4u 12 4u
32\, + 12 + 44 4u 12
16A, +164+2(u+a) | 104+2u 10+2u | 4
6—14 12 + 4u 30 10u 0| 6 2u : (28)
12 + 44 104 30 0 2a 6
10 + 2u 25 445u |10 5 uw |2
10 + 24 4+ 50 25 10 @ 5 |0]2
4 10 10 2% 2 2 |5[5]1

Comparing this matrix with the subdivision matrix (6), wedbhat it has the same blocks on its diagonal. Thus, if
we use the Doo-Sabin weights (17) yet again, the spectruhreafiiginal subdivision matrix becomes

11 1 1 1 1 1
155555 Z ) §71_67§7a . (29)
A

2n—3X 2nX 2nx 2nx nX

Since all the knots in this scheme are double knots, we neealtsider x 5 vertices in each segment in order to
obtain the characteristic map; see Fig. 9.

With u = e~ *“ as before and defining = 2(3086¢ + 7595) we obtain the normalised column vector (again,
displayed as a matrix with the element correspondin@#& lying in the left bottom corner)

2170(3c+4) 31(191c+315) 5441c+ 11935  30(185¢ -+ 434) h

2170(2c+3) 31(127c+ 245) 3(1321c+ 3255) 2(2196¢ + 5425)  30(185¢ + 434)
— | 1085(3¢c+5) 186(16c¢+35) 10(333c+868) 3(1321c+ 3255) H44lc+ 11935

1085(c+3)  310(5¢c+14)  186(16¢+35)  31(127c¢+245) 31(191c+ 315)

2170 1085(c+3)  1085(3¢c+5)  2170(2¢+3)  2170(3¢ + 4) 0)
6 5 3 2 0
e 3 10 2
Y13 2 0 -1 -3
hl 1 0o —2 -3 5
0 -1 -3 —4 —6
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a) dual b) dual c) primal

Figure 11: Degree raising and knot insertion: a) to b) viaréegaising, c) to b) via doubling every knot.

and its complex conjugate associated with= 1/2 and\,,_; = 1/2. These give the natural configuration of the
scheme; see Fig. 10.

By inspecting the characteristic map®f, via the three bicubic patches depicted in Fig. 9 as we didarctse of
the M,, scheme (see Section 2.3), one can show that the map is regdlarjective. This proves that tfig, scheme
produces”! surfaces for any value of the valeney> 3.

4. Conclusions and future work

We have investigated binary subdivision schemes derivemh ftubic B-splines with double knots. Based on
results from the univariate case, we presented and anahsesuibdivision scenarios: thet,, scheme using single
knot insertion, where: double knots meet at (extraordinary) faces, andhescheme, where all knots are double
and double knot insertion is used. We showed that, with tteécehof the original Doo-Sabin weights, both these
schemes produdg' surfaces. We also pointed out that, whereas the origin&umi(bi)cubic scheme is primal, the
new schemes exhibit dual behaviour in the vicinity of dowrlets; see Fig. 11.

These results partially address some of the current limitatof Cashman’s NURBS-compatible subdivision
framework and open possibilities for further investigatio

Now we present several directions for further researcharatieas of subdivision with multiple knots and NURBS-
compatible subdivision.

e Higher degrees

The subdivision matrices of botht,, andD,, have the same diagonal blocks as the Doo-Sabin scheme. Thus,
for an odd degred > 5 scheme with double knots, we conjecture that its subdirisnatrix has the same
diagonal blocks as the uniform scheme with all knots singldegreed — 1. This would mean that we could
use the same weights as in the uniform schemes of degrek

Starting the same process with degree four B-splines méy gieell behaved’' scheme with double (or even
triple) knots, this time with Catmull-Clark weights (Catthand Clark, 1978)p. Also, it is reasonable to expect
that higher order schemes of degrewith knots of multiplicity up tod — 1 will produceC" surfaces as well.
These considerations are closely related to degree sixresheith quadruple knots generatia surfaces
(Reif, 1995; Prautzsch, 1997).

e Dual schemes
Consider a bivariate, even-degree schehadl of whose knots are single, i.e., an even-degree duahseh€he
following steps describe a potential algorithm for inclugls among odd-degree schemes by degree raising.

— Raise the degree of by one to obtain a dual odd-degree scheme with extraordfaaeg. This comprises
doubling all knots and computing new vertices by degreéngisee Fig. 11.
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— A subdivision step consists of inserting a double knot irnt®rg non-zero knot interval.
— Optionally, after a desired number of iterations removelallble knots by reducing the degree by one.

The open questions here are: how to insert and remove doabts ln extraordinary regions (degree raising
and reduction) and how to handle such regions themselvesrirstof weights.

e Asymmetric configurations

What about a point where just one double knot comes in alory? tn such a scenario one can look at the
4-valent case first, as each valency will probably need loplit individually. The Fourier partitioning will
not work in this case, but general eigenanalysis shouldstidpplicable, exploiting one reflectional symmetry.
Asymmetric configurations also include scenarios wherdéskwith various multiplicities meet.

AcknowledgementThe authors thank EPSRC for supporting this work throughtge®/H030115/1 and the anony-
mous reviewers for their helpful insights.
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